Regular and Chaotic Dynamics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Regul. Chaotic Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Regular and Chaotic Dynamics, 2014, Volume 19, Issue 4, Pages 506–512
DOI: https://doi.org/10.1134/S1560354714040066
(Mi rcd177)
 

This article is cited in 6 scientific papers (total in 6 papers)

On the Dynamical Coherence of Structurally Stable 3-diffeomorphisms

Vyacheslav Z. Grines, Yulia A. Levchenko, Vladislav S. Medvedev, Olga V. Pochinka

Nizhny Novgorod State University, pr. Gagarina 23, Nizhny Novgorod, 603950 Russia
Citations (6)
References:
Abstract: We prove that each structurally stable diffeomorphism ff on a closed 3-manifold M3M3 with a two-dimensional surface nonwandering set is topologically conjugated to some model dynamically coherent diffeomorphism.
Keywords: structural stability, surface basic set, partial hyperbolicity, dynamical coherence.
Funding agency Grant number
Russian Foundation for Basic Research 12-01- 00672-a
13-01-12452-ofi-m
This work was supported by the Russian Foundation for Basic Research (project nos. 12-01-00672-a, 13-01-12452-ofi-m).
Received: 20.03.2014
Accepted: 05.05.2014
Bibliographic databases:
Document Type: Article
MSC: 37D20, 37D30
Language: English
Citation: Vyacheslav Z. Grines, Yulia A. Levchenko, Vladislav S. Medvedev, Olga V. Pochinka, “On the Dynamical Coherence of Structurally Stable 3-diffeomorphisms”, Regul. Chaotic Dyn., 19:4 (2014), 506–512
Citation in format AMSBIB
\Bibitem{GriLevMed14}
\by Vyacheslav~Z.~Grines, Yulia~A.~Levchenko, Vladislav~S.~Medvedev, Olga~V.~Pochinka
\paper On the Dynamical Coherence of Structurally Stable 3-diffeomorphisms
\jour Regul. Chaotic Dyn.
\yr 2014
\vol 19
\issue 4
\pages 506--512
\mathnet{http://mi.mathnet.ru/rcd177}
\crossref{https://doi.org/10.1134/S1560354714040066}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3240983}
\zmath{https://zbmath.org/?q=an:1335.37010}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000340380900006}
Linking options:
  • https://www.mathnet.ru/eng/rcd177
  • https://www.mathnet.ru/eng/rcd/v19/i4/p506
  • This publication is cited in the following 6 articles:
    1. Vyacheslav Z. Grines, Olga V. Pochinka, Ekaterina E. Chilina, “On Homeomorphisms of Three-Dimensional Manifolds with Pseudo-Anosov Attractors and Repellers”, Regul. Chaotic Dyn., 29:1 (2024), 156–173  mathnet  crossref
    2. V. Z. Grines, O. V. Pochinka, E. E. Chilina, “Dynamics of 3-Homeomorphisms with Two-Dimensional Attractors and Repellers”, J Math Sci, 270:5 (2023), 683  crossref
    3. Vyacheslav Z. Grines, Elena Ya. Gurevich, Olga V. Pochinka, “On the Number of Heteroclinic Curves of Diffeomorphisms with Surface Dynamics”, Regul. Chaotic Dyn., 22:2 (2017), 122–135  mathnet  crossref
    4. V. Z. Grines, T. V. Medvedev, O. V. Pochinka, “Introduction to Dynamical Systems”, Dynamical Systems on 2- and 3-Manifolds, Developments in Mathematics, 46, Springler, 2016, 1–26  crossref  mathscinet  isi
    5. V. Z. Grines, O. V. Pochinka, A. A. Shilovskaya, “Diffeomorfizmy 3-mnogoobrazii s odnomernymi bazisnymi mnozhestvami prostorno raspolozhennymi na 2-torakh”, Zhurnal SVMO, 18:1 (2016), 17–26  mathnet  elib
    6. V. Z. Grines, Ye. V. Zhuzhoma, O. V. Pochinka, “Rough diffeomorphisms with basic sets of codimension one”, Journal of Mathematical Sciences, 225:2 (2017), 195–219  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Statistics & downloads:
    Abstract page:221
    References:60
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025