Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2005, Volume 250, Pages 5–53 (Mi tm29)  

This article is cited in 28 scientific papers (total in 28 papers)

Classification of Morse–Smale Diffeomorphisms with a Finite Set of Heteroclinic Orbits on 3-Manifolds

Ch. Bonattia, V. Z. Grinesb, O. V. Pochinkac

a Université de Bourgogne
b Nizhnii Novgorod State Agricultural Academy
c N. I. Lobachevski State University of Nizhni Novgorod
References:
Abstract: A topological classification is obtained for a certain class of Morse–Smale diffeomorphisms defined on a closed smooth orientable three-dimensional manifold $M$. The class $G$ of these diffeomorphisms is determined by the following conditions: the wandering set of each diffeomorphism $f\in G$ contains a finite number of heteroclinic orbits and does not contain heteroclinic curves. For a diffeomorphism $f\in G$, a complete topological invariant (a scheme $S(f)$) is introduced. In particular, this scheme describes the topological structure of the embedding of two-dimensional separatrices of saddle periodic points into an ambient manifold. Moreover, the realization problem is solved: for each abstract invariant (perfect scheme $S$), a representative $f_S$ of a class of topologically conjugate diffeomorphisms is constructed whose scheme is equivalent to the initial one.
Received in January 2005
Bibliographic databases:
UDC: 517.91
Language: Russian
Citation: Ch. Bonatti, V. Z. Grines, O. V. Pochinka, “Classification of Morse–Smale Diffeomorphisms with a Finite Set of Heteroclinic Orbits on 3-Manifolds”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 250, Nauka, MAIK «Nauka/Inteperiodika», M., 2005, 5–53; Proc. Steklov Inst. Math., 250 (2005), 1–46
Citation in format AMSBIB
\Bibitem{BonGriPoc05}
\by Ch.~Bonatti, V.~Z.~Grines, O.~V.~Pochinka
\paper Classification of Morse--Smale Diffeomorphisms with a~Finite Set of Heteroclinic Orbits on 3-Manifolds
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2005
\vol 250
\pages 5--53
\publ Nauka, MAIK «Nauka/Inteperiodika»
\publaddr M.
\mathnet{http://mi.mathnet.ru/tm29}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2200906}
\zmath{https://zbmath.org/?q=an:1138.37307}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2005
\vol 250
\pages 1--46
Linking options:
  • https://www.mathnet.ru/eng/tm29
  • https://www.mathnet.ru/eng/tm/v250/p5
  • This publication is cited in the following 28 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òðóäû Ìàòåìàòè÷åñêîãî èíñòèòóòà èìåíè Â. À. Ñòåêëîâà Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:689
    Full-text PDF :255
    References:71
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024