Russian Mathematical Surveys
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uspekhi Mat. Nauk:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Russian Mathematical Surveys, 2013, Volume 68, Issue 1, Pages 117–173
DOI: https://doi.org/10.1070/RM2013v068n01ABEH004823
(Mi rm9489)
 

This article is cited in 21 scientific papers (total in 21 papers)

Morse–Smale cascades on 3-manifolds

V. Z. Grines, O. V. Pochinka

Nizhnii Novgorod State University
References:
Abstract: This is a survey of recent (from 2000) results obtained by the authors in collaboration with Russian and foreign colleagues. The major theme of our investigations involves Morse–Smale cascades on orientable 3-manifolds and includes a complete topological classification of them, a determination of the interconnection between their dynamics and the topology of the ambient manifold, a criterion for embeddability in a topological flow, and necessary and sufficient conditions for such cascades to have an energy function.
Bibliography: 76 titles.
Keywords: Morse–Smale diffeomorphism, topological classification, embedding in a flow, energy function.
Funding agency Grant number
Russian Foundation for Basic Research 12-01-00672
11-01-12056-офи-м
Ministry of Education and Science of the Russian Federation 11.G34.31.0039
1.1907.2011
Received: 09.06.2012
Bibliographic databases:
Document Type: Article
UDC: 517.938
MSC: Primary 37D15; Secondary 37C05, 37C15, 37E30, 37C29, 37B25, 57M30
Language: English
Original paper language: Russian
Citation: V. Z. Grines, O. V. Pochinka, “Morse–Smale cascades on 3-manifolds”, Russian Math. Surveys, 68:1 (2013), 117–173
Citation in format AMSBIB
\Bibitem{GriPoc13}
\by V.~Z.~Grines, O.~V.~Pochinka
\paper Morse--Smale cascades on 3-manifolds
\jour Russian Math. Surveys
\yr 2013
\vol 68
\issue 1
\pages 117--173
\mathnet{http://mi.mathnet.ru//eng/rm9489}
\crossref{https://doi.org/10.1070/RM2013v068n01ABEH004823}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3088080}
\zmath{https://zbmath.org/?q=an:06170780}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2013RuMaS..68..117G}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000318537500003}
\elib{https://elibrary.ru/item.asp?id=20423481}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84877021235}
Linking options:
  • https://www.mathnet.ru/eng/rm9489
  • https://doi.org/10.1070/RM2013v068n01ABEH004823
  • https://www.mathnet.ru/eng/rm/v68/i1/p129
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Успехи математических наук Russian Mathematical Surveys
    Statistics & downloads:
    Abstract page:1037
    Russian version PDF:348
    English version PDF:42
    References:92
    First page:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024