Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2009, Volume 86, Issue 2, Pages 175–183
DOI: https://doi.org/10.4213/mzm8474
(Mi mzm8474)
 

This article is cited in 8 scientific papers (total in 8 papers)

Quasi-Energy Function for Diffeomorphisms with Wild Separatrices

V. Z. Grinesa, F. Laudenbachb, O. V. Pochinkaa

a N. I. Lobachevski State University of Nizhni Novgorod
b Université de Nantes
Full-text PDF (554 kB) Citations (8)
References:
Abstract: We consider the class $G_4$ of Morse–Smale diffeomorphisms on $\mathbb S^3$ with nonwandering set consisting of four fixed points (namely, one saddle, two sinks, and one source). According to Pixton, this class contains a diffeomorphism that does not have an energy function, i.e., a Lyapunov function whose set of critical points coincides with the set of periodic points of the diffeomorphism itself. We define a quasi-energy function for any Morse–Smale diffeomorphism as a Lyapunov function with the least number of critical points. Next, we single out the class $G_{4,1}\subset G_4$ of diffeomorphisms inducing a special Heegaard splitting of genus 1 of the sphere $\mathbb S^3$. For each diffeomorphism in $G_{4,1}$, we present a quasi-energy function with six critical points.
Keywords: Morse–Smale diffeomorphism, Lyapunov function, Morse theory, saddle, sink, source, separatrix, wild embedding, Heegaard splitting, cobordism.
Received: 13.11.2008
English version:
Mathematical Notes, 2009, Volume 86, Issue 2, Pages 163–170
DOI: https://doi.org/10.1134/S0001434609070190
Bibliographic databases:
UDC: 514.74
Language: Russian
Citation: V. Z. Grines, F. Laudenbach, O. V. Pochinka, “Quasi-Energy Function for Diffeomorphisms with Wild Separatrices”, Mat. Zametki, 86:2 (2009), 175–183; Math. Notes, 86:2 (2009), 163–170
Citation in format AMSBIB
\Bibitem{GriLauPoc09}
\by V.~Z.~Grines, F.~Laudenbach, O.~V.~Pochinka
\paper Quasi-Energy Function for Diffeomorphisms with Wild Separatrices
\jour Mat. Zametki
\yr 2009
\vol 86
\issue 2
\pages 175--183
\mathnet{http://mi.mathnet.ru/mzm8474}
\crossref{https://doi.org/10.4213/mzm8474}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2584553}
\zmath{https://zbmath.org/?q=an:1180.58008}
\transl
\jour Math. Notes
\yr 2009
\vol 86
\issue 2
\pages 163--170
\crossref{https://doi.org/10.1134/S0001434609070190}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269660400019}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76249115217}
Linking options:
  • https://www.mathnet.ru/eng/mzm8474
  • https://doi.org/10.4213/mzm8474
  • https://www.mathnet.ru/eng/mzm/v86/i2/p175
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:475
    Full-text PDF :181
    References:75
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024