Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2010, Volume 271, Pages 111–133 (Mi tm3236)  

This article is cited in 54 scientific papers (total in 54 papers)

Global attractor and repeller of Morse–Smale diffeomorphisms

V. Z. Grinesa, E. V. Zhuzhomab, V. S. Medvedevc, O. V. Pochinkaa

a Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
b Nizhni Novgorod State Pedagogical University, Nizhni Novgorod, Russia
c Research Institute for Applied Mathematics and Cybernetics, Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
References:
Abstract: Let $f$ be an orientation-preserving Morse–Smale diffeomorphism of an $n$-dimensional ($n\ge3$) closed orientable manifold $M^n$. We show the possibility of representing the dynamics of $f$ in a “source–sink” form. The roles of the “source” and “sink” are played by invariant closed sets one of which, $A_f$, is an attractor, and the other, $R_f$, is a repeller. Such a representation reveals new topological invariants that describe the embedding (possibly, wild) of stable and unstable manifolds of saddle periodic points in the ambient manifold. These invariants have allowed us to obtain a classification of substantial classes of Morse–Smale diffeomorphisms on 3-manifolds. In this paper, for any $n\ge3$, we describe the topological structure of the sets $A_f$ and $R_f$ and of the space of orbits that belong to the set $M^n\setminus(A_f\cup R_f)$.
Received in January 2010
English version:
Proceedings of the Steklov Institute of Mathematics, 2010, Volume 271, Pages 103–124
DOI: https://doi.org/10.1134/S0081543810040097
Bibliographic databases:
Document Type: Article
UDC: 517.938
Language: Russian
Citation: V. Z. Grines, E. V. Zhuzhoma, V. S. Medvedev, O. V. Pochinka, “Global attractor and repeller of Morse–Smale diffeomorphisms”, Differential equations and topology. II, Collected papers. In commemoration of the centenary of the birth of Academician Lev Semenovich Pontryagin, Trudy Mat. Inst. Steklova, 271, MAIK Nauka/Interperiodica, Moscow, 2010, 111–133; Proc. Steklov Inst. Math., 271 (2010), 103–124
Citation in format AMSBIB
\Bibitem{GriZhuMed10}
\by V.~Z.~Grines, E.~V.~Zhuzhoma, V.~S.~Medvedev, O.~V.~Pochinka
\paper Global attractor and repeller of Morse--Smale diffeomorphisms
\inbook Differential equations and topology.~II
\bookinfo Collected papers. In commemoration of the centenary of the birth of Academician Lev Semenovich Pontryagin
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 271
\pages 111--133
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3236}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2841715}
\elib{https://elibrary.ru/item.asp?id=15524636}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 271
\pages 103--124
\crossref{https://doi.org/10.1134/S0081543810040097}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000287921200009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-79952229014}
Linking options:
  • https://www.mathnet.ru/eng/tm3236
  • https://www.mathnet.ru/eng/tm/v271/p111
  • This publication is cited in the following 54 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:771
    Full-text PDF :192
    References:115
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024