Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2020, Volume 107, Issue 2, Pages 276–285
DOI: https://doi.org/10.4213/mzm12360
(Mi mzm12360)
 

This article is cited in 1 scientific paper (total in 1 paper)

A Morse Energy Function for Topological Flows with Finite Hyperbolic Chain Recurrent Sets

O. V. Pochinkaa, S. Kh. Zininaba

a National Research University "Higher School of Economics", Nizhny Novgorod Branch
b Ogarev Mordovia State University
Full-text PDF (570 kB) Citations (1)
References:
Abstract: A Lyapunov function for a flow on a manifold is a continuous function which decreases along orbits outside the chain recurrent set and is constant on each chain component. By virtue of C. Conley's results, such a function exists for any flow generated by a continuous vector field; the very fact of its existence is known as the fundamental theorem of dynamical systems. If the set of critical points of a Lyapunov function coincides with the chain recurrent set of the flow, then this function is called an energy function. The paper considers topological flows with a finite hyperbolic (in the topological sense) chain recurrent set on closed surfaces. It is proved that any such flow has a (continuous) Morse energy function. The work is a conceptual continuation of that of S. Smale and K. Meyer, who proved the existence of a smooth Morse energy function for any gradient flow on a manifold.
Keywords: Lyapunov function, energy function, chain recurrent set.
Funding agency Grant number
Russian Science Foundation 17-11-01041
Foundation for the Development of Theoretical Physics and Mathematics BASIS
This work was supported by the Russian Science Foundation under grant 17-11-01041 in the framework of the 2019 project of the Center for Basic Research, National Research University Higher School of Economics, and by the “BASIS” Foundation for the Advancement of Theoretical Physics and Mathematics.
Received: 17.02.2019
Revised: 12.04.2019
English version:
Mathematical Notes, 2020, Volume 107, Issue 2, Pages 313–321
DOI: https://doi.org/10.1134/S0001434620010319
Bibliographic databases:
Document Type: Article
UDC: 517
Language: Russian
Citation: O. V. Pochinka, S. Kh. Zinina, “A Morse Energy Function for Topological Flows with Finite Hyperbolic Chain Recurrent Sets”, Mat. Zametki, 107:2 (2020), 276–285; Math. Notes, 107:2 (2020), 313–321
Citation in format AMSBIB
\Bibitem{PocZin20}
\by O.~V.~Pochinka, S.~Kh.~Zinina
\paper A Morse Energy Function for Topological Flows with Finite Hyperbolic Chain Recurrent Sets
\jour Mat. Zametki
\yr 2020
\vol 107
\issue 2
\pages 276--285
\mathnet{http://mi.mathnet.ru/mzm12360}
\crossref{https://doi.org/10.4213/mzm12360}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070012}
\elib{https://elibrary.ru/item.asp?id=42649804}
\transl
\jour Math. Notes
\yr 2020
\vol 107
\issue 2
\pages 313--321
\crossref{https://doi.org/10.1134/S0001434620010319}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000519555100031}
\elib{https://elibrary.ru/item.asp?id=43257845}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85081005212}
Linking options:
  • https://www.mathnet.ru/eng/mzm12360
  • https://doi.org/10.4213/mzm12360
  • https://www.mathnet.ru/eng/mzm/v107/i2/p276
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:343
    Full-text PDF :46
    References:38
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024