Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics]
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Rus. J. Nonlin. Dyn.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Nelineinaya Dinamika [Russian Journal of Nonlinear Dynamics], 2011, Volume 7, Number 2, Pages 227–238 (Mi nd256)  

This article is cited in 1 scientific paper (total in 1 paper)

Necessary and sufficient conditions for topological classification of Morse–Smale cascades on 3-manifolds

O. V. Pochinka

Research Institute of Applied Mathematics and Cybernetics, Nizhny Novgorod State University
Full-text PDF (412 kB) Citations (1)
References:
Abstract: In this paper class $MS(M^3)$ of Morse–Smale diffeomorphisms (cascades) given on connected closed orientable $3$-manifolds are considered. For a diffeomorphism $f\in MS(M^3)$ it is introduced a notion scheme $S_f$, which contains an information on the periodic data of the cascade and a topology of embedding of the sepsrstrices of the saddle points. It is established that necessary and sufficient condition for topological conjugacy of diffeomorphisms $f,f'\in MS(M^3)$ is the equivalence of the schemes $S_f$$S_{f'}$.
Keywords: Morse–Smale diffeomorphism (cascade), topological conjugacy, space orbit.
Received: 12.05.2011
Revised: 02.06.2011
Bibliographic databases:
Document Type: Article
UDC: 517.938
MSC: 37E30
Language: Russian
Citation: O. V. Pochinka, “Necessary and sufficient conditions for topological classification of Morse–Smale cascades on 3-manifolds”, Nelin. Dinam., 7:2 (2011), 227–238
Citation in format AMSBIB
\Bibitem{Poc11}
\by O.~V.~Pochinka
\paper Necessary and sufficient conditions for topological classification of Morse--Smale cascades on 3-manifolds
\jour Nelin. Dinam.
\yr 2011
\vol 7
\issue 2
\pages 227--238
\mathnet{http://mi.mathnet.ru/nd256}
\elib{https://elibrary.ru/item.asp?id=16515647}
Linking options:
  • https://www.mathnet.ru/eng/nd256
  • https://www.mathnet.ru/eng/nd/v7/i2/p227
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Нелинейная динамика
    Statistics & downloads:
    Abstract page:372
    Full-text PDF :89
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024