Trudy Matematicheskogo Instituta imeni V.A. Steklova
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Trudy Mat. Inst. Steklova:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Trudy Matematicheskogo Instituta imeni V.A. Steklova, 2012, Volume 278, Pages 34–48 (Mi tm3404)  

This article is cited in 15 scientific papers (total in 15 papers)

Dynamically ordered energy function for Morse–Smale diffeomorphisms on $3$-manifolds

V. Z. Grinesa, F. Laudenbachb, O. V. Pochinkaa

a Lobachevsky State University of Nizhni Novgorod, Nizhni Novgorod, Russia
b Laboratoire de Mathématiques Jean Leray, UMR 6629 du CNRS, Faculté des Sciences et Techniques, Université de Nantes, Nantes, France
References:
Abstract: This paper deals with arbitrary Morse–Smale diffeomorphisms in dimension $3$ and extends ideas from the authors' previous studies where the gradient-like case was considered. We introduce a kind of Morse–Lyapunov function, called dynamically ordered, which fits well the dynamics of a diffeomorphism. The paper is devoted to finding conditions for the existence of such an energy function, that is, a function whose set of critical points coincides with the nonwandering set of the considered diffeomorphism. We show that necessary and sufficient conditions for the existence of a dynamically ordered energy function reduce to the type of the embedding of one-dimensional attractors and repellers, each of which is a union of zero- and one-dimensional unstable (stable) manifolds of periodic orbits of a given Morse–Smale diffeomorphism on a closed $3$-manifold.
Received in March 2011
English version:
Proceedings of the Steklov Institute of Mathematics, 2012, Volume 278, Pages 27–40
DOI: https://doi.org/10.1134/S0081543812060041
Bibliographic databases:
Document Type: Article
UDC: 517.938
Language: Russian
Citation: V. Z. Grines, F. Laudenbach, O. V. Pochinka, “Dynamically ordered energy function for Morse–Smale diffeomorphisms on $3$-manifolds”, Differential equations and dynamical systems, Collected papers, Trudy Mat. Inst. Steklova, 278, MAIK Nauka/Interperiodica, Moscow, 2012, 34–48; Proc. Steklov Inst. Math., 278 (2012), 27–40
Citation in format AMSBIB
\Bibitem{GriLauPoc12}
\by V.~Z.~Grines, F.~Laudenbach, O.~V.~Pochinka
\paper Dynamically ordered energy function for Morse--Smale diffeomorphisms on $3$-manifolds
\inbook Differential equations and dynamical systems
\bookinfo Collected papers
\serial Trudy Mat. Inst. Steklova
\yr 2012
\vol 278
\pages 34--48
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm3404}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3058781}
\elib{https://elibrary.ru/item.asp?id=17928409}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2012
\vol 278
\pages 27--40
\crossref{https://doi.org/10.1134/S0081543812060041}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000309861500004}
\elib{https://elibrary.ru/item.asp?id=20494306}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84867340236}
Linking options:
  • https://www.mathnet.ru/eng/tm3404
  • https://www.mathnet.ru/eng/tm/v278/p34
  • This publication is cited in the following 15 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Труды Математического института имени В. А. Стеклова Proceedings of the Steklov Institute of Mathematics
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :71
    References:80
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024