Abstract:
A method for constructing cascades on surfaces is developed, which makes it possible to model structurally unstable discrete dynamical systems with finitely many orbits of heteroclinic tangency and preset moduli of topological conjugacy.
Keywords:
structurally unstable dynamical system, cascade, orbit of heteroclinic tangency, modulus of topological conjugacy, scheme of a diffeomorphism.
Citation:
T. M. Mitryakova, O. V. Pochinka, “Realization of Cascades on Surfaces with Finitely Many Moduli of Topological Conjugacy”, Mat. Zametki, 93:6 (2013), 902–919; Math. Notes, 93:6 (2013), 890–905
\Bibitem{MitPoc13}
\by T.~M.~Mitryakova, O.~V.~Pochinka
\paper Realization of Cascades on Surfaces with Finitely Many Moduli of Topological Conjugacy
\jour Mat. Zametki
\yr 2013
\vol 93
\issue 6
\pages 902--919
\mathnet{http://mi.mathnet.ru/mzm10244}
\crossref{https://doi.org/10.4213/mzm10244}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3206040}
\zmath{https://zbmath.org/?q=an:06198931}
\elib{https://elibrary.ru/item.asp?id=20731746}
\transl
\jour Math. Notes
\yr 2013
\vol 93
\issue 6
\pages 890--905
\crossref{https://doi.org/10.1134/S0001434613050271}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000321274300027}
\elib{https://elibrary.ru/item.asp?id=20438978}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84879771610}
Linking options:
https://www.mathnet.ru/eng/mzm10244
https://doi.org/10.4213/mzm10244
https://www.mathnet.ru/eng/mzm/v93/i6/p902
This publication is cited in the following 3 articles:
A. Morozov, O. Pochinka, “Classification of Morse–Smale diffeomorphisms with a finite set of heteroclinic orbits on surfaces”, Mosc. Math. J., 23:4 (2023), 571–590
Malyshev D. Morozov A. Pochinka O., “Combinatorial Invariant For Morse-Smale Diffeomorphisms on Surfaces With Orientable Heteroclinic”, Chaos, 31:2 (2021), 023119
V. Z. Grines, S. H. Kapkaeva, O. V. Pochinka, “A three-colour graph as a complete topological invariant for gradient-like diffeomorphisms of surfaces”, Sb. Math., 205:10 (2014), 1387–1412