This work was supported
by the Russian Science Foundation
under grant 17-11-01041
and
by the Basic Research Program of the
National Research University Higher School of Economics
for the year 2018
(grant no. 95).
Citation:
V. Z. Grines, E. Ya. Gurevich, O. V. Pochinka, “A Combinatorial Invariant of Morse–Smale Diffeomorphisms without Heteroclinic Intersections on the Sphere Sn, n⩾4”, Mat. Zametki, 105:1 (2019), 136–141; Math. Notes, 105:1 (2019), 132–136
\Bibitem{GriGurPoc19}
\by V.~Z.~Grines, E.~Ya.~Gurevich, O.~V.~Pochinka
\paper A Combinatorial Invariant of Morse--Smale Diffeomorphisms without Heteroclinic Intersections on the Sphere~$S^n$, $n\ge 4$
\jour Mat. Zametki
\yr 2019
\vol 105
\issue 1
\pages 136--141
\mathnet{http://mi.mathnet.ru/mzm12098}
\crossref{https://doi.org/10.4213/mzm12098}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3894455}
\elib{https://elibrary.ru/item.asp?id=36603833}
\transl
\jour Math. Notes
\yr 2019
\vol 105
\issue 1
\pages 132--136
\crossref{https://doi.org/10.1134/S0001434619010140}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000464727500014}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85064243127}
Linking options:
https://www.mathnet.ru/eng/mzm12098
https://doi.org/10.4213/mzm12098
https://www.mathnet.ru/eng/mzm/v105/i1/p136
This publication is cited in the following 7 articles:
V. Z. Grines, E. Ya. Gurevich, “On classification of Morse–Smale flows on projective-like manifolds”, Izv. Math., 86:5 (2022), 876–902
Wenping Wei, Leipo Liu, “Dynamic model of language propagation in english translation based on differential equations”, Mathematical Problems in Engineering, 2022 (2022), 1
V. Z. Grines, E. Ya. Gurevich, V. S. Medvedev, “On Realization of Topological Conjugacy Classes of Morse–Smale Cascades on the Sphere Sn”, Proc. Steklov Inst. Math., 310 (2020), 108–123
Vladislav E. Kruglov, Dmitry S. Malyshev, Olga V. Pochinka, Danila D. Shubin, “On Topological Classification of Gradient-like Flows on an n-sphere in the Sense of Topological Conjugacy”, Regul. Chaotic Dyn., 25:6 (2020), 716–728
V. E. Kruglov, O. V. Pochinka, “Criterion for the Topological Conjugacy of Multi-Dimensional Gradient-Like Flows with No Heteroclinic Intersections on a Sphere”, J Math Sci, 250:1 (2020), 22
V. Z. Grines, E. Ya. Gurevich, E. V. Zhuzhoma, O. V. Pochinka, “Classification of Morse–Smale systems and topological structure of the underlying manifolds”, Russian Math. Surveys, 74:1 (2019), 37–110
Pochinka V O., Galkina S.Yu., Shubin D.D., “Modeling of Gradient-Like Flows on N-Sphere”, Izv. Vyss. Uchebn. Zaved.-Prikl. Nelineynaya Din., 27:6 (2019), 63–72