Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Zhuravlev, Vladimir Georgievich

Professor
Doctor of physico-mathematical sciences
E-mail:

https://www.mathnet.ru/eng/person8781
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/192575

Publications in Math-Net.Ru Citations
2024
1. V. G. Zhuravlev, “Local rules for quasi-periodic tilings”, Zap. Nauchn. Sem. POMI, 538 (2024),  102–128  mathnet
2. V. G. Zhuravlev, “Multidimensional Euclidean algorithm and continued fractions”, Zap. Nauchn. Sem. POMI, 538 (2024),  85–101  mathnet
3. V. G. Zhuravlev, “Multidimensional inhomogeneous approximations”, Zap. Nauchn. Sem. POMI, 538 (2024),  45–84  mathnet
2023
4. V. G. Zhuravlev, “Self-similarity and substitutions of the karyon tilings”, Zap. Nauchn. Sem. POMI, 523 (2023),  83–120  mathnet
5. V. G. Zhuravlev, “Inflation and deflation of the karyon tilings”, Zap. Nauchn. Sem. POMI, 523 (2023),  53–82  mathnet 1
6. V. G. Zhuravlev, “Circle homeomorphisms and continued fractions”, Zap. Nauchn. Sem. POMI, 523 (2023),  39–52  mathnet
2022
7. V. G. Zhuravlev, “Symmetries of the universal karyon tilings”, Zap. Nauchn. Sem. POMI, 511 (2022),  100–136  mathnet 1
8. V. G. Zhuravlev, “Combinatoric of the karyon tilings”, Zap. Nauchn. Sem. POMI, 511 (2022),  54–99  mathnet 1
9. V. G. Zhuravlev, “Differentiating of the karyon tilings”, Zap. Nauchn. Sem. POMI, 511 (2022),  28–53  mathnet 1
2021
10. V. G. Zhuravlev, “Symmetries structure of karyon tilings”, Zap. Nauchn. Sem. POMI, 502 (2021),  74–121  mathnet 2
11. V. G. Zhuravlev, “Local structure of the karyon tilings”, Zap. Nauchn. Sem. POMI, 502 (2021),  32–73  mathnet 3
12. V. G. Zhuravlev, “Fractional-matrix invariance of Diophantine systems of linear forms”, Zap. Nauchn. Sem. POMI, 502 (2021),  5–31  mathnet
2020
13. V. G. Zhuravlev, “Universal karyon tilings”, Zap. Nauchn. Sem. POMI, 490 (2020),  49–93  mathnet 4
14. V. G. Zhuravlev, “$\mathcal{L}$-algorithm for approximating Diophantine systems of linear forms”, Zap. Nauchn. Sem. POMI, 490 (2020),  25–48  mathnet
15. V. G. Zhuravlev, “Diophantine approximations of linear forms”, Zap. Nauchn. Sem. POMI, 490 (2020),  5–24  mathnet
2019
16. V. G. Zhuravlev, “Local algorithm for constructing the derived tilings of two-dimensional torus”, Zap. Nauchn. Sem. POMI, 479 (2019),  85–120  mathnet 7
17. V. G. Zhuravlev, “The best approximation of algebraic numbers by multidimensional continued fractions”, Zap. Nauchn. Sem. POMI, 479 (2019),  52–84  mathnet
18. V. G. Zhuravlev, “Dual Diophantine systems of linear inequalities”, Zap. Nauchn. Sem. POMI, 479 (2019),  23–51  mathnet
2018
19. V. G. Zhuravlev, “Unimodular invariance of karyon decompositions of algebraic numbers in multidimensional continued fractions”, Zap. Nauchn. Sem. POMI, 469 (2018),  96–137  mathnet  mathscinet; J. Math. Sci. (N. Y.), 242:4 (2019), 531–559  scopus 1
20. V. G. Zhuravlev, “The unimodularity of the induced toric tilings”, Zap. Nauchn. Sem. POMI, 469 (2018),  64–95  mathnet  mathscinet; J. Math. Sci. (N. Y.), 242:4 (2019), 509–530  scopus
21. V. G. Zhuravlev, “The karyon algorithm for decomposition into multidimensional continued fractions”, Zap. Nauchn. Sem. POMI, 469 (2018),  32–63  mathnet  mathscinet; J. Math. Sci. (N. Y.), 242:4 (2019), 487–508  scopus
2017
22. V. G. Zhuravlev, “Simplex–karyon algorithm of multidimensional continued fraction expansion”, Trudy Mat. Inst. Steklova, 299 (2017),  283–303  mathnet  elib; Proc. Steklov Inst. Math., 299 (2017), 268–287  isi  scopus 6
23. V. G. Zhuravlev, “Local Pisot matricies and mutual approximations of algebraic numbers”, Zap. Nauchn. Sem. POMI, 458 (2017),  104–134  mathnet; J. Math. Sci. (N. Y.), 234:5 (2018), 659–679 9
24. V. G. Zhuravlev, “Fractional-linear invariance of the symplex-module algorithm for decomposition in multidimensional continued fractions”, Zap. Nauchn. Sem. POMI, 458 (2017),  77–103  mathnet; J. Math. Sci. (N. Y.), 234:5 (2018), 640–658 2
25. V. G. Zhuravlev, “Fractional-linear invariance of multidimensional continued fractions”, Zap. Nauchn. Sem. POMI, 458 (2017),  42–76  mathnet; J. Math. Sci. (N. Y.), 234:5 (2018), 616–639 3
2016
26. V. G. Zhuravlev, “Induced bounded remainder sets”, Algebra i Analiz, 28:5 (2016),  171–194  mathnet  mathscinet  elib; St. Petersburg Math. J., 28:5 (2017), 671–688  isi  scopus 3
27. V. G. Zhuravlev, “Symmetrization of bounded remainder sets”, Algebra i Analiz, 28:4 (2016),  80–101  mathnet  mathscinet  elib; St. Petersburg Math. J., 28:4 (2017), 491–506  isi  scopus
28. V. G. Zhuravlev, “Periodic karyon expansions of cubic irrationals in continued fractions”, Sovrem. Probl. Mat., 23 (2016),  43–68  mathnet  elib; Proc. Steklov Inst. Math., 296, suppl. 2 (2017), 36–60  isi  scopus 7
29. V. G. Zhuravlev, “Karyon expansions of Pisot numbers in multidimensional continued fractions”, Zap. Nauchn. Sem. POMI, 449 (2016),  168–195  mathnet  mathscinet; J. Math. Sci. (N. Y.), 225:6 (2017), 950–968  scopus 15
30. V. G. Zhuravlev, “Simplex-module algorithm for expansion of algebraic numbers in multidimensional continued fractions”, Zap. Nauchn. Sem. POMI, 449 (2016),  130–167  mathnet  mathscinet; J. Math. Sci. (N. Y.), 225:6 (2017), 924–949  scopus 7
31. V. G. Zhuravlev, “Periodic karyon expansions of algebraic units in multidimensional continued fractions”, Zap. Nauchn. Sem. POMI, 449 (2016),  84–129  mathnet  mathscinet; J. Math. Sci. (N. Y.), 225:6 (2017), 893–923  scopus 4
32. V. G. Zhuravlev, “Bounded remainder sets”, Zap. Nauchn. Sem. POMI, 445 (2016),  93–174  mathnet  mathscinet; J. Math. Sci. (N. Y.), 222:5 (2017), 585–640  scopus 6
33. V. G. Zhuravlev, “Differentiation of induced toric tilings and multi-dimensional approximations of algebraic numbers”, Zap. Nauchn. Sem. POMI, 445 (2016),  33–92  mathnet  mathscinet; J. Math. Sci. (N. Y.), 222:5 (2017), 544–584  scopus 24
2015
34. V. G. Zhuravlev, “Bounded remainder sets with respect to toric exchange transformations”, Algebra i Analiz, 27:2 (2015),  96–131  mathnet  mathscinet  elib; St. Petersburg Math. J., 27:2 (2016), 245–271  isi  scopus 2
35. V. G. Zuravlev, “Multi-colour bounded remainder sets”, Chebyshevskii Sb., 16:2 (2015),  93–116  mathnet  elib
36. V. G. Zhuravlev, “Multi-colour dynamical tilings of tori into bounded remainder sets”, Izv. RAN. Ser. Mat., 79:5 (2015),  65–102  mathnet  mathscinet  zmath  elib; Izv. Math., 79:5 (2015), 919–954  isi  scopus 3
37. V. G. Zhuravlev, “Dividing toric tilings and bounded remainder sets”, Zap. Nauchn. Sem. POMI, 440 (2015),  99–122  mathnet  mathscinet; J. Math. Sci. (N. Y.), 217:1 (2016), 65–80  scopus 12
38. V. G. Zhuravlev, “Two-dimension approximations by the method of dividing toric tilings”, Zap. Nauchn. Sem. POMI, 440 (2015),  81–98  mathnet  mathscinet; J. Math. Sci. (N. Y.), 217:1 (2016), 54–64  scopus 18
2014
39. V. G. Zhuravlev, “Imbedding of circular orbits and the distribution of fractional parts”, Algebra i Analiz, 26:6 (2014),  29–68  mathnet  mathscinet  elib; St. Petersburg Math. J., 26:6 (2015), 881–909  isi  elib  scopus 1
40. V. G. Zhuravlev, “Bounded remainder sets on the double covering of the Klein bottle”, Zap. Nauchn. Sem. POMI, 429 (2014),  82–105  mathnet; J. Math. Sci. (N. Y.), 207:6 (2015), 857–873  scopus 1
2012
41. V. G. Zhuravlev, “Moduli of toric tilings into bounded remainder sets and balanced words”, Algebra i Analiz, 24:4 (2012),  97–136  mathnet  mathscinet  zmath  elib; St. Petersburg Math. J., 24:4 (2013), 601–629  isi  elib  scopus 10
42. V. G. Zhuravlev, “Multi-dimensional Hecke theorem on the distribution of fractional parts”, Algebra i Analiz, 24:1 (2012),  95–130  mathnet  mathscinet  zmath  elib; St. Petersburg Math. J., 24:1 (2013), 71–97  isi  elib  scopus 20
43. V. G. Zhuravlev, “Bounded Remainder Polyhedra”, Sovrem. Probl. Mat., 16 (2012),  82–102  mathnet  zmath  elib; Proc. Steklov Inst. Math., 280, suppl. 2 (2013), S71–S90  isi  scopus 37
2011
44. V. G. Zhuravlev, “The Hecke theorem: Form and Idea”, Chebyshevskii Sb., 12:1 (2011),  79–92  mathnet  mathscinet
45. V. G. Zhuravlev, “Exchanged toric developments and bounded remainder sets”, Zap. Nauchn. Sem. POMI, 392 (2011),  95–145  mathnet; J. Math. Sci. (N. Y.), 184:6 (2012), 716–745  scopus 37
2010
46. V. G. Zhuravlev, “Parametrization of a two-dimensional quasiperiodic Rauzy tiling”, Algebra i Analiz, 22:4 (2010),  21–56  mathnet  mathscinet  zmath; St. Petersburg Math. J., 22:4 (2011), 529–555  isi  scopus 5
47. V. G. Zhuravlev, “Geometrization of Hecke's theorem”, Chebyshevskii Sb., 11:1 (2010),  126–144  mathnet  mathscinet 4
48. V. G. Zhuravlev, “Hyperbolas over two-dimensional Fibonacci quasilattices”, Fundam. Prikl. Mat., 16:6 (2010),  45–62  mathnet  mathscinet  elib; J. Math. Sci., 182:4 (2012), 472–483  scopus 3
49. V. G. Zhuravlev, “One-dimensional Fibonacci tilings and induced two-colour rotations of the circle”, Izv. RAN. Ser. Mat., 74:2 (2010),  65–108  mathnet  mathscinet  zmath  elib; Izv. Math., 74:2 (2010), 281–323  isi  elib  scopus 3
2009
50. V. G. Zhuravlev, “Two-colour rotations of the unit circle”, Izv. RAN. Ser. Mat., 73:1 (2009),  79–120  mathnet  mathscinet  zmath  elib; Izv. Math., 73:1 (2009), 79–120  isi  elib  scopus 7
51. V. V. Krasil'shchikov, A. V. Shutov, V. G. Zhuravlev, “One-dimensional quasiperiodic tilings admitting progressions enclosure”, Izv. Vyssh. Uchebn. Zaved. Mat., 2009, no. 7,  3–9  mathnet  mathscinet  zmath  elib; Russian Math. (Iz. VUZ), 53:7 (2009), 1–6 14
2008
52. V. G. Zhuravlev, “Even Fibonacci numbers: the binary additive problem, the distribution over progressions, and the spectrum”, Algebra i Analiz, 20:3 (2008),  18–46  mathnet  mathscinet  zmath  elib; St. Petersburg Math. J., 20:3 (2009), 339–360  isi 11
2007
53. V. G. Zhuravlev, “One-dimensional Fibonacci quasilattices and their application to the Euclidean algorithm and Diophantine equations”, Algebra i Analiz, 19:3 (2007),  151–182  mathnet  mathscinet  zmath; St. Petersburg Math. J., 19:3 (2008), 431–454  isi 13
54. V. G. Zhuravlev, “The arithmetic of two-color rotations of the circle”, Chebyshevskii Sb., 8:2 (2007),  56–72  mathnet  mathscinet  zmath
55. V. G. Zhuravlev, “One-dimensional Fibonacci tilings”, Izv. RAN. Ser. Mat., 71:2 (2007),  89–122  mathnet  mathscinet  zmath  elib; Izv. Math., 71:2 (2007), 307–340  isi  elib  scopus 43
56. V. G. Zhuravlev, “The Pell equation over the $\circ$-Fibonacci ring”, Zap. Nauchn. Sem. POMI, 350 (2007),  139–159  mathnet; J. Math. Sci. (N. Y.), 150:3 (2008), 2084–2095  scopus 5
57. V. G. Zhuravlev, “The attraction domain for the attractor of a two-color circle rotation”, Zap. Nauchn. Sem. POMI, 350 (2007),  89–138  mathnet  elib; J. Math. Sci. (N. Y.), 150:3 (2008), 2056–2083  elib  scopus 1
2006
58. V. G. Zhuravlev, “Sums of squares over the Fibonacci $\circ$-ring”, Zap. Nauchn. Sem. POMI, 337 (2006),  165–190  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 143:3 (2007), 3108–3123  scopus 10
2005
59. V. G. Zhuravlev, “Rauzy tilings and bounded remainder sets on the torus”, Zap. Nauchn. Sem. POMI, 322 (2005),  83–106  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 137:2 (2006), 4658–4672  scopus 57
2002
60. V. G. Zhuravlev, “Growth of random tilings of graphs: between crystal and chaos”, Algebra i Analiz, 14:6 (2002),  129–168  mathnet  mathscinet  zmath; St. Petersburg Math. J., 14:6 (2003), 985–1015 2
2001
61. V. G. Zhuravlev, “Self-similar growth of periodic partitions and graphs”, Algebra i Analiz, 13:2 (2001),  69–92  mathnet  mathscinet  zmath; St. Petersburg Math. J., 13:2 (2002), 201–220 25
62. V. G. Zhuravlev, “Deformations of quadratic Diophantine systems”, Izv. RAN. Ser. Mat., 65:6 (2001),  15–56  mathnet  mathscinet  zmath; Izv. Math., 65:6 (2001), 1085–1126  scopus 5
63. V. G. Zhuravlev, A. A. Yudin, “Random walks on plane crystallographic groups”, Zap. Nauchn. Sem. POMI, 276 (2001),  204–218  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 118:1 (2003), 4852–4860
1999
64. V. G. Zhuravlev, “Primitive embeddings into local lattices of prime determinant”, Algebra i Analiz, 11:1 (1999),  87–117  mathnet  mathscinet  zmath; St. Petersburg Math. J., 11:1 (2000), 67–90 4
65. V. G. Zhuravlev, “Embedding $p$-elementary lattices”, Izv. RAN. Ser. Mat., 63:1 (1999),  77–106  mathnet  mathscinet  zmath; Izv. Math., 63:1 (1999), 73–102  isi  scopus 4
1997
66. V. G. Zhuravlev, “Orbits of representations of numbers by local quadratic forms”, Trudy Mat. Inst. Steklova, 218 (1997),  151–164  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 218 (1997), 146–159 5
1996
67. V. G. Zhuravlev, “Representation of a form by a genus of quadratic forms”, Algebra i Analiz, 8:1 (1996),  21–112  mathnet  mathscinet  zmath; St. Petersburg Math. J., 8:1 (1997), 15–84 7
1995
68. V. G. Zhuravlev, “Multiplicative arithmetic of theta-series of odd quadratic forms”, Izv. RAN. Ser. Mat., 59:3 (1995),  77–140  mathnet  mathscinet  zmath; Izv. Math., 59:3 (1995), 517–578  isi 2
1994
69. V. G. Zhuravlev, “Spherical theta-series and Hecke operators”, Trudy Mat. Inst. Steklov., 207 (1994),  93–122  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 207 (1995), 87–110 1
70. V. G. Zhuravlev, “Euler decompositions for theta-series of even quadratic forms”, Zap. Nauchn. Sem. POMI, 212 (1994),  97–113  mathnet  mathscinet  zmath; J. Math. Sci., 83:6 (1997), 750–761
1993
71. V. G. Zhuravlev, “Generalized Eichler–Brandt matrices, Hecke operators, and vector-valued theta series”, Algebra i Analiz, 5:3 (1993),  143–178  mathnet  mathscinet  zmath; St. Petersburg Math. J., 5:3 (1994), 545–576 1
1991
72. V. G. Zuravlev, “A correspondence between theta series of ternary and quasiternary quadratic forms”, Zap. Nauchn. Sem. LOMI, 196 (1991),  61–82  mathnet  mathscinet  zmath; J. Math. Sci., 70:6 (1994), 2097–2111
1990
73. V. G. Zuravlev, “Local duality for Hecke operators for symplectic and orthogonal groups”, Zap. Nauchn. Sem. LOMI, 185 (1990),  37–59  mathnet  mathscinet  zmath; J. Soviet Math., 59:6 (1992), 1159–1173 2
1989
74. V. G. Zhuravlev, “The trace of Hecke operators of quaternion quadratic spaces”, Algebra i Analiz, 1:6 (1989),  149–166  mathnet  mathscinet  zmath; Leningrad Math. J., 1:6 (1990), 1459–1478
1986
75. V. G. Zhuravlev, “Explicit duality formulas for symplectic and orthogonal Hecke operators on theta-series of positive quadratic forms”, Mat. Sb. (N.S.), 130(172):3(7) (1986),  413–430  mathnet  mathscinet  zmath; Math. USSR-Sb., 58:2 (1987), 417–434 2
1984
76. V. G. Zhuravlev, “Euler expansions of theta transforms of Siegel modular forms of half-integral weight and their analytic properties”, Mat. Sb. (N.S.), 123(165):2 (1984),  174–194  mathnet  mathscinet  zmath; Math. USSR-Sb., 51:1 (1985), 169–190 10
1983
77. V. G. Zhuravlev, “Hecke rings for a covering of the symplectic group”, Mat. Sb. (N.S.), 121(163):3(7) (1983),  381–402  mathnet  mathscinet  zmath; Math. USSR-Sb., 49:2 (1984), 379–399 10
1982
78. V. G. Zhuravlev, “Euler products for Hilbert–Siegel modular forms of genus $2$”, Mat. Sb. (N.S.), 117(159):4 (1982),  449–468  mathnet  mathscinet  zmath; Math. USSR-Sb., 45:4 (1983), 439–460 1
1980
79. V. G. Zhuravlev, “Hecke operators of the symplectic group of degree two over a real field”, Zap. Nauchn. Sem. LOMI, 100 (1980),  48–58  mathnet  mathscinet  zmath; J. Soviet Math., 19:6 (1982), 1652–1659
1978
80. V. G. Zhuravlev, “Zeros on the critical line of Dirichlet series associated with Hilbert modular forms”, Zap. Nauchn. Sem. LOMI, 76 (1978),  89–123  mathnet  mathscinet  zmath; J. Soviet Math., 18:3 (1982), 350–373
81. V. G. Zhuravlev, “Zeros of the Dirichlet $L$-functions on short segments of the critical line”, Zap. Nauchn. Sem. LOMI, 76 (1978),  72–88  mathnet  mathscinet  zmath; J. Soviet Math., 18:3 (1982), 339–350 2
1976
82. V. G. Zhuravlev, “The zeros of a Dirichlet $L$ function on the critical line”, Mat. Zametki, 19:4 (1976),  561–570  mathnet  mathscinet  zmath; Math. Notes, 19:4 (1976), 341–346 1

2020
83. S. V. Vostokov, Yu. V. Matiyasevich, Yu. V. Nesterenko, V. N. Chubarikov, V. I. Bernik, A. Laurinčikas, V. G. Zhuravlev, V. G. Chirskii, N. M. Dobrovol'skii, U. M. Pachev, F. V. Podsypanin, I. Yu. Rebrova, B. M. Shirokov, N. N. Dobrovol'skii, “Evgeny Vladimirovich Podsypanin”, Chebyshevskii Sb., 21:4 (2020),  425–426  mathnet
2017
84. A. V. Shutov, V. G. Zhuravlev, A. S. Balci, M. B. Khripunova, “Boris Veniaminovich Levin. On his 90th anniversary”, Chebyshevskii Sb., 18:2 (2017),  315–330  mathnet  elib
2009
85. M. B. Khripunova, V. G. Zhuravlev, A. A. Zhukova, E. P. Davletyarova, “Aleksandr Aleksandrovich Yudin”, Chebyshevskii Sb., 10:1 (2009),  109–113  mathnet  mathscinet
2003
86. G. I. Arkhipov, V. G. Zhuravlev, V. A. Iskovskikh, A. A. Karatsuba, M. B. Levina-Khripunova, V. N. Chubarikov, A. A. Yudin, “Nikolai Mikhailovich Timofeev (obituary)”, Uspekhi Mat. Nauk, 58:4(352) (2003),  135–138  mathnet  mathscinet  zmath; Russian Math. Surveys, 58:4 (2003), 773–776  isi 1

Presentations in Math-Net.Ru
1. Разбиения и цепные дроби
V. G. Zhuravlev

November 10, 2022 15:35
2. Simplex-modular algorithm for the decomposition of algebraic numbers into multidimensional continued fractions
V. G. Zhuravlev
А.A.Karatsuba's 80th Birthday Conference in Number Theory and Applications
May 23, 2017 15:25   

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024