Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2014, Volume 429, Pages 82–105 (Mi znsl6069)  

This article is cited in 1 scientific paper (total in 1 paper)

Bounded remainder sets on the double covering of the Klein bottle

V. G. Zhuravlev

Vladimir State University, Vladimir, Russia
Full-text PDF (269 kB) Citations (1)
References:
Abstract: The shift $\widetilde{\mathbb S}\colon\widetilde{\mathbb K}^2\to\widetilde{\mathbb K}^2$ on the double covering of the Klein bottle $\widetilde{\mathbb K}^2=\mathbb K^2\times\{\pm1\}$ is considered. This shift $\widetilde{\mathbb S}$ generates some tiling $\widetilde{\mathbb K}^2=\widetilde{\mathbb K}^2_0\sqcup\widetilde{\mathbb K}^2_1$ into two bounded remainder sets $\widetilde{\mathbb K}^2_0$ and $\widetilde{\mathbb K}^2_1$ with respect to the shift $\widetilde{\mathbb S}$. Two-sided estimates are proved for the deviation functions of these sets.
Key words and phrases: bounded remainder sets, double covering of Klein bottle, multi-dimensional Hecke theorem.
Funding agency Grant number
Russian Science Foundation 14-11-00433
Received: 23.06.2014
English version:
Journal of Mathematical Sciences (New York), 2015, Volume 207, Issue 6, Pages 857–873
DOI: https://doi.org/10.1007/s10958-015-2410-9
Bibliographic databases:
Document Type: Article
UDC: 511
Language: Russian
Citation: V. G. Zhuravlev, “Bounded remainder sets on the double covering of the Klein bottle”, Analytical theory of numbers and theory of functions. Part 29, Zap. Nauchn. Sem. POMI, 429, POMI, St. Petersburg, 2014, 82–105; J. Math. Sci. (N. Y.), 207:6 (2015), 857–873
Citation in format AMSBIB
\Bibitem{Zhu14}
\by V.~G.~Zhuravlev
\paper Bounded remainder sets on the double covering of the Klein bottle
\inbook Analytical theory of numbers and theory of functions. Part~29
\serial Zap. Nauchn. Sem. POMI
\yr 2014
\vol 429
\pages 82--105
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6069}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2015
\vol 207
\issue 6
\pages 857--873
\crossref{https://doi.org/10.1007/s10958-015-2410-9}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84949624721}
Linking options:
  • https://www.mathnet.ru/eng/znsl6069
  • https://www.mathnet.ru/eng/znsl/v429/p82
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:201
    Full-text PDF :48
    References:49
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024