|
Zapiski Nauchnykh Seminarov POMI, 2014, Volume 429, Pages 82–105
(Mi znsl6069)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Bounded remainder sets on the double covering of the Klein bottle
V. G. Zhuravlev Vladimir State University, Vladimir, Russia
Abstract:
The shift $\widetilde{\mathbb S}\colon\widetilde{\mathbb K}^2\to\widetilde{\mathbb K}^2$ on the double covering of the Klein bottle $\widetilde{\mathbb K}^2=\mathbb K^2\times\{\pm1\}$ is considered. This shift $\widetilde{\mathbb S}$ generates some tiling $\widetilde{\mathbb K}^2=\widetilde{\mathbb K}^2_0\sqcup\widetilde{\mathbb K}^2_1$ into two bounded remainder sets $\widetilde{\mathbb K}^2_0$ and $\widetilde{\mathbb K}^2_1$ with respect to the shift $\widetilde{\mathbb S}$. Two-sided estimates are proved for the deviation functions of these sets.
Key words and phrases:
bounded remainder sets, double covering of Klein bottle, multi-dimensional Hecke theorem.
Received: 23.06.2014
Citation:
V. G. Zhuravlev, “Bounded remainder sets on the double covering of the Klein bottle”, Analytical theory of numbers and theory of functions. Part 29, Zap. Nauchn. Sem. POMI, 429, POMI, St. Petersburg, 2014, 82–105; J. Math. Sci. (N. Y.), 207:6 (2015), 857–873
Linking options:
https://www.mathnet.ru/eng/znsl6069 https://www.mathnet.ru/eng/znsl/v429/p82
|
Statistics & downloads: |
Abstract page: | 201 | Full-text PDF : | 48 | References: | 49 |
|