Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2009, Volume 73, Issue 1, Pages 79–120
DOI: https://doi.org/10.1070/IM2009v073n01ABEH002439
(Mi im601)
 

This article is cited in 7 scientific papers (total in 7 papers)

Two-colour rotations of the unit circle

V. G. Zhuravlev

Vladimir State Pedagogical University
References:
Abstract: We consider two-colour, or double, rotations $S_{(\alpha,\beta,\varepsilon)}(x)$ of the unit circle $C$ the colouring of which depends on a continuous parameter $\varepsilon\in C$ and each area of which is given its own rotation angle, $\alpha$ or $\beta$. We choose as a model the one-parameter family of two-colour rotations $S_\varepsilon(x)=S_{(2\tau,\tau,\varepsilon)}(x)$, where $\tau=(1+\sqrt{5}\,)/2$ is the golden ratio, which have rotation rank $d=2$. It is proved that the first-return map $S_\varepsilon|\mathrm{Att}_\varepsilon$ (the restriction of the rotation $S_\varepsilon(x)$ to its attractor $\mathrm{Att}_\varepsilon$) is isomorphic to the integral map $T_\varepsilon=T(S^{\pm1},d_\varepsilon)$ constructed from the simple rotation $S$ of the circle through the angle $\pm \tau$ and some piecewise-constant function $d_\varepsilon$. An exact formula is obtained for the function $\nu(\varepsilon)$ of frequency distribution of points of the orbits under the action of $S_\varepsilon$.
Keywords: two-colour (double) rotations, ITM-maps (interval translation maps), distribution of fractional parts, Fibonacci tilings.
Received: 10.10.2005
Revised: 23.10.2007
Bibliographic databases:
UDC: 514
Language: English
Original paper language: Russian
Citation: V. G. Zhuravlev, “Two-colour rotations of the unit circle”, Izv. Math., 73:1 (2009), 79–120
Citation in format AMSBIB
\Bibitem{Zhu09}
\by V.~G.~Zhuravlev
\paper Two-colour rotations of the unit circle
\jour Izv. Math.
\yr 2009
\vol 73
\issue 1
\pages 79--120
\mathnet{http://mi.mathnet.ru//eng/im601}
\crossref{https://doi.org/10.1070/IM2009v073n01ABEH002439}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2503122}
\zmath{https://zbmath.org/?q=an:1187.37058}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009IzMat..73...79Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000264628800005}
\elib{https://elibrary.ru/item.asp?id=20358666}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-65349083690}
Linking options:
  • https://www.mathnet.ru/eng/im601
  • https://doi.org/10.1070/IM2009v073n01ABEH002439
  • https://www.mathnet.ru/eng/im/v73/i1/p79
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024