Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2005, Volume 322, Pages 83–106 (Mi znsl395)  

This article is cited in 57 scientific papers (total in 57 papers)

Rauzy tilings and bounded remainder sets on the torus

V. G. Zhuravlev

Vladimir State Pedagogical University
References:
Abstract: For the two dimensional torus $\mathbb{T}^2$ we construct the Rauzy tilings $d^0\supset d^1\supset\ldots\supset d^m\supset\ldots$, where each tiling $d^{m+1}$ turns out by inflation of $d^{m}$. The following results are proved:
1) Any tiling $d^{m}$ is invariant with respect to the shift $S(x)=x+\begin{pmatrix} \zeta \\ \zeta ^2\end{pmatrix}\mod\mathbb{Z}^2$, here $\zeta^{-1}> 1$ is a Pisot number satisfying the equation $x^3-x^2-x-1=0$.
2) The induced map $S^{(m)}=S|_{B^m d}$ is an exchange transformation of $B^m d\subset\mathbb{T}^2$, where $d=d^0$ and $B=\begin{pmatrix} - \zeta & - \zeta \\ 1-\zeta ^2 & \zeta^2\end{pmatrix}$.
3) The map $S^{(m)}$ is a shift of the torus $B^m d\simeq\mathbb{T}^2$ and $S^{(m)}$ is isomorphic to the initial shift $S$. It means that $d^m$ are infinite differentiable tilings.
Let $Z_N(X)$ be equal to the number of points in the orbit $S^1(0), S^2(0)$, $\ldots,S^N(0)$ visited the domain $B^m d$. Then the remainder $r_N(B^md)=Z_N(B^m d)-N\zeta^m$ satisfies $-1.7<r_N(B^m d)<0.5$ for all $m$.
Received: 05.03.2005
English version:
Journal of Mathematical Sciences (New York), 2006, Volume 137, Issue 2, Pages 4658–4672
DOI: https://doi.org/10.1007/s10958-006-0262-z
Bibliographic databases:
UDC: 519.68
Language: Russian
Citation: V. G. Zhuravlev, “Rauzy tilings and bounded remainder sets on the torus”, Proceedings on number theory, Zap. Nauchn. Sem. POMI, 322, POMI, St. Petersburg, 2005, 83–106; J. Math. Sci. (N. Y.), 137:2 (2006), 4658–4672
Citation in format AMSBIB
\Bibitem{Zhu05}
\by V.~G.~Zhuravlev
\paper Rauzy tilings and bounded remainder sets on the torus
\inbook Proceedings on number theory
\serial Zap. Nauchn. Sem. POMI
\yr 2005
\vol 322
\pages 83--106
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl395}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2138453}
\zmath{https://zbmath.org/?q=an:1158.11331}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2006
\vol 137
\issue 2
\pages 4658--4672
\crossref{https://doi.org/10.1007/s10958-006-0262-z}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746121532}
Linking options:
  • https://www.mathnet.ru/eng/znsl395
  • https://www.mathnet.ru/eng/znsl/v322/p83
  • This publication is cited in the following 57 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:467
    Full-text PDF :119
    References:74
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024