Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2020, Volume 490, Pages 49–93 (Mi znsl6936)  

This article is cited in 4 scientific papers (total in 4 papers)

Universal karyon tilings

V. G. Zhuravlev

Vladimir State University
References:
Abstract: Universal karyon tilings $\mathcal{T}^{d}(v,\mu)$ of the real $d$-dimensional space $\mathbb{R}^{d}$ are constructed. These tilings depend on two free parameters: the star $v=\{ v_0, \ldots, v_d \}$ formed by $d + 1$ vectors $v_0, \ldots, v_d\in\mathbb{R}^{d}$, and the weight vector $\mu=( \mu_0,\mu_1, \ldots,\mu_d)\in\mathbb{R}^{d+1}$ with $\mu_k>0$ satisfying $\mu_0+\mu_1+ \ldots + \mu_d=1$. The tiling $\mathcal{T}^{d}(v,\mu)$ contains the karyon $\mathrm{Kr}=T_{0}\cup T_{1}\cup \ldots \cup T_{d} \subset\mathcal{T}(v,\mu) $ consisting of all types of parallelepipeds $T_{0},T_{1},\ldots,T_{d}$ from which the tiling $\mathcal{T}^{d}(v,\mu)$ is formed. The karyon $\mathrm{Kr}$ is a convex parallelohedron uniquely determined by the star $v$. Coordinates $\mu_k$ of the weight vector $\mu$ set the frequency of occurrence of parallelepipeds $T_{k} \in \mathrm {Kr}$ in the karyon tiling $\mathcal{T}^{d}(v,\mu)$.
Key words and phrases: polyhedral karyon tilings, stepped surfaces, star graphs.
Received: 24.03.2020
Document Type: Article
UDC: 511.9, 511.48
Language: Russian
Citation: V. G. Zhuravlev, “Universal karyon tilings”, Algebra and number theory. Part 3, Zap. Nauchn. Sem. POMI, 490, POMI, St. Petersburg, 2020, 49–93
Citation in format AMSBIB
\Bibitem{Zhu20}
\by V.~G.~Zhuravlev
\paper Universal karyon tilings
\inbook Algebra and number theory. Part~3
\serial Zap. Nauchn. Sem. POMI
\yr 2020
\vol 490
\pages 49--93
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6936}
Linking options:
  • https://www.mathnet.ru/eng/znsl6936
  • https://www.mathnet.ru/eng/znsl/v490/p49
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:88
    Full-text PDF :29
    References:24
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024