Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2022, Volume 511, Pages 100–136 (Mi znsl7210)  

This article is cited in 1 scientific paper (total in 1 paper)

Symmetries of the universal karyon tilings

V. G. Zhuravlev

Vladimir State University
Full-text PDF (348 kB) Citations (1)
References:
Abstract: Universal karyon tilings $\mathcal{T}(v,\mu, \rho)$ are generated by the parallelepipeds $T_{0}, T_{1}, \ldots, T_{d}$ dividing the real space $\mathbb{R}^{d}$. The tilings $\mathcal{T}(v,\mu, \rho)$ are parameterized by triples $(v, \mu, \rho)$ running through the infinite cylinder $\triangle \times \triangle \times \mathbb{R}$ with the base $\triangle \times \triangle$ that is the direct product of two simplices $\triangle$ of dimension $d$. The parameter $v$ defines the geometry of the parallelepipeds $T_{k}$ and the two others $\mu, \rho$ define the symmetry of the karyon tiling \break $\mathcal{T}(v,\mu, \rho)$. We consider the usual and generalized symmetries of tilings $\mathcal{T}(v,\mu, 0)$. The generalized symmetries are quasi-symmetries that map the tilings $\mathcal{T}(v,\mu, 0)$ to their dual tilings $\mathcal{T}^{*}(v,\mu, 0)$.
Key words and phrases: stars, stepped surfaces.
Received: 24.02.2022
Document Type: Article
UDC: 511.3
Language: Russian
Citation: V. G. Zhuravlev, “Symmetries of the universal karyon tilings”, Algebra and number theory. Part 5, Zap. Nauchn. Sem. POMI, 511, POMI, St. Petersburg, 2022, 100–136
Citation in format AMSBIB
\Bibitem{Zhu22}
\by V.~G.~Zhuravlev
\paper Symmetries of the universal karyon tilings
\inbook Algebra and number theory. Part~5
\serial Zap. Nauchn. Sem. POMI
\yr 2022
\vol 511
\pages 100--136
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl7210}
Linking options:
  • https://www.mathnet.ru/eng/znsl7210
  • https://www.mathnet.ru/eng/znsl/v511/p100
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:55
    Full-text PDF :24
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024