|
Zapiski Nauchnykh Seminarov POMI, 2022, Volume 511, Pages 100–136
(Mi znsl7210)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Symmetries of the universal karyon tilings
V. G. Zhuravlev Vladimir State University
Abstract:
Universal karyon tilings $\mathcal{T}(v,\mu, \rho)$ are generated by the parallelepipeds $T_{0}, T_{1}, \ldots, T_{d}$ dividing the real space $\mathbb{R}^{d}$. The tilings $\mathcal{T}(v,\mu, \rho)$ are parameterized by triples $(v, \mu, \rho)$ running through the infinite cylinder $\triangle \times \triangle \times \mathbb{R}$ with the base $\triangle \times \triangle$ that is the direct product of two simplices $\triangle$ of dimension $d$. The parameter $v$ defines the geometry of the parallelepipeds $T_{k}$ and the two others $\mu, \rho$ define the symmetry of the karyon tiling \break $\mathcal{T}(v,\mu, \rho)$. We consider the usual and generalized symmetries of tilings $\mathcal{T}(v,\mu, 0)$. The generalized symmetries are quasi-symmetries that map the tilings $\mathcal{T}(v,\mu, 0)$ to their dual tilings $\mathcal{T}^{*}(v,\mu, 0)$.
Key words and phrases:
stars, stepped surfaces.
Received: 24.02.2022
Citation:
V. G. Zhuravlev, “Symmetries of the universal karyon tilings”, Algebra and number theory. Part 5, Zap. Nauchn. Sem. POMI, 511, POMI, St. Petersburg, 2022, 100–136
Linking options:
https://www.mathnet.ru/eng/znsl7210 https://www.mathnet.ru/eng/znsl/v511/p100
|
Statistics & downloads: |
Abstract page: | 52 | Full-text PDF : | 22 | References: | 20 |
|