Loading [MathJax]/jax/output/CommonHTML/jax.js
Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2012, Volume 24, Issue 4, Pages 97–136 (Mi aa1294)  

This article is cited in 10 scientific papers (total in 10 papers)

Research Papers

Moduli of toric tilings into bounded remainder sets and balanced words

V. G. Zhuravlev

Vladimir State Humanitarian University, Vladimir, Russia
References:
Received: 20.12.2010
English version:
St. Petersburg Mathematical Journal, 2013, Volume 24, Issue 4, Pages 601–629
DOI: https://doi.org/10.1090/S1061-0022-2013-01256-8
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. G. Zhuravlev, “Moduli of toric tilings into bounded remainder sets and balanced words”, Algebra i Analiz, 24:4 (2012), 97–136; St. Petersburg Math. J., 24:4 (2013), 601–629
Citation in format AMSBIB
\Bibitem{Zhu12}
\by V.~G.~Zhuravlev
\paper Moduli of toric tilings into bounded remainder sets and balanced words
\jour Algebra i Analiz
\yr 2012
\vol 24
\issue 4
\pages 97--136
\mathnet{http://mi.mathnet.ru/aa1294}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3088009}
\zmath{https://zbmath.org/?q=an:06208627}
\elib{https://elibrary.ru/item.asp?id=20730168}
\transl
\jour St. Petersburg Math. J.
\yr 2013
\vol 24
\issue 4
\pages 601--629
\crossref{https://doi.org/10.1090/S1061-0022-2013-01256-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000331548500005}
\elib{https://elibrary.ru/item.asp?id=20439402}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84878667736}
Linking options:
  • https://www.mathnet.ru/eng/aa1294
  • https://www.mathnet.ru/eng/aa/v24/i4/p97
  • This publication is cited in the following 10 articles:
    1. A. A. Zhukova, A. V. Shutov, “n-korony v razbieniyakh tora na mnozhestva ogranichennogo ostatka”, Chebyshevskii sb., 20:3 (2019), 246–260  mathnet  crossref
    2. V. G. Zhuravlev, “The unimodularity of the induced toric tilings”, J. Math. Sci. (N. Y.), 242:4 (2019), 509–530  mathnet  crossref  mathscinet
    3. V. G. Zhuravlev, “Symmetrization of bounded remainder sets”, St. Petersburg Math. J., 28:4 (2017), 491–506  mathnet  crossref  mathscinet  isi  elib
    4. V. G. Zhuravlev, “Differentiation of induced toric tilings and multi-dimensional approximations of algebraic numbers”, J. Math. Sci. (N. Y.), 222:5 (2017), 544–584  mathnet  crossref  mathscinet
    5. V. G. Zhuravlev, “Mnogotsvetnye mnozhestva ogranichennogo ostatka”, Chebyshevskii sb., 16:2 (2015), 93–116  mathnet  elib
    6. V. G. Zhuravlev, “Multi-colour dynamical tilings of tori into bounded remainder sets”, Izv. Math., 79:5 (2015), 919–954  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    7. V. G. Zhuravlev, “Bounded remainder sets with respect to toric exchange transformations”, St. Petersburg Math. J., 27:2 (2016), 245–271  mathnet  crossref  mathscinet  isi  elib
    8. V. G. Zhuravlev, “Imbedding of circular orbits and the distribution of fractional parts”, St. Petersburg Math. J., 26:6 (2015), 881–909  mathnet  crossref  mathscinet  isi  elib  elib
    9. V. G. Zhuravlev, “Bounded remainder sets on the double covering of the Klein bottle”, J. Math. Sci. (N. Y.), 207:6 (2015), 857–873  mathnet  crossref
    10. V. G. Zhuravlev, “Bounded Remainder Polyhedra”, Proc. Steklov Inst. Math., 280, suppl. 2 (2013), S71–S90  mathnet  crossref  crossref  zmath  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:417
    Full-text PDF :85
    References:59
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025