Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2015, Volume 79, Issue 5, Pages 919–954
DOI: https://doi.org/10.1070/IM2015v079n05ABEH002767
(Mi im8003)
 

This article is cited in 3 scientific papers (total in 3 papers)

Multi-colour dynamical tilings of tori into bounded remainder sets

V. G. Zhuravlev

Vladimir State University
References:
Abstract: We use tilings of multi-dimensional tori to construct bounded remainder sets that are finite unions of convex polyhedra. For the deviations of the distribution of points in the orbits with respect to translations of the torus over these sets, we prove a multi-dimensional version of Hecke's theorem on the distribution of fractional parts on a circle.
Keywords: multi-dimensional Hecke theorem, bounded remainder sets, polyhedra.
Funding agency Grant number
Russian Science Foundation 14-11-00433
This investigation was done with the support of the Russian Scientific Foundation (project no. 14-11-00433).
Received: 04.06.2012
Revised: 06.03.2015
Bibliographic databases:
Document Type: Article
UDC: 511
MSC: 37B50, 11J71, 52C22
Language: English
Original paper language: Russian
Citation: V. G. Zhuravlev, “Multi-colour dynamical tilings of tori into bounded remainder sets”, Izv. Math., 79:5 (2015), 919–954
Citation in format AMSBIB
\Bibitem{Zhu15}
\by V.~G.~Zhuravlev
\paper Multi-colour dynamical tilings of tori into bounded remainder sets
\jour Izv. Math.
\yr 2015
\vol 79
\issue 5
\pages 919--954
\mathnet{http://mi.mathnet.ru//eng/im8003}
\crossref{https://doi.org/10.1070/IM2015v079n05ABEH002767}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3438456}
\zmath{https://zbmath.org/?q=an:1367.37017}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2015IzMat..79..919Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000367372500004}
\elib{https://elibrary.ru/item.asp?id=24849992}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84948414775}
Linking options:
  • https://www.mathnet.ru/eng/im8003
  • https://doi.org/10.1070/IM2015v079n05ABEH002767
  • https://www.mathnet.ru/eng/im/v79/i5/p65
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024