|
Fundamentalnaya i Prikladnaya Matematika, 2010, Volume 16, Issue 6, Pages 45–62
(Mi fpm1350)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Hyperbolas over two-dimensional Fibonacci quasilattices
V. G. Zhuravlev Vladimir State Pedagogical University
Abstract:
For the number $n_s(\alpha,\beta;X)$ of points $(x_1,x_2)$ in the two-dimensional Fibonacci quasilattices $\mathcal F^2_m$ of level $m=0,1,2,\dots$ lying on the hyperbola $x_1^2-\alpha x_2^2=\beta$ and such that $0\leq x_1\leq X$, $x_2\geq0$, the asymptotic formula
$$
n_s(\alpha,\beta;X)\sim c_s(\alpha,\beta)\ln X\quad\text{as}\quad X\to\infty
$$
is established, the coefficient $c_s(\alpha,\beta)$ is calculated exactly. Using this, the following result is obtained. Let $F_m$ be the Fibonacci numbers, $A_i\in\mathbb N$, $i=1,2$, and let $\overleftarrow A_i$ be the shift of $A_i$ in the Fibonacci numeral system. Then the number $n_s(X)$ of all solutions $(A_1,A_2)$ of the Diophantine system
$$
\left\{
\begin{aligned}
&A_1^2+\overleftarrow A_1^2-2A_2\overleftarrow A_2+\overleftarrow A_2^2=F_{2s},\\
&\overleftarrow A_1^2-2A_1\overleftarrow A_1+A_2^2-2A_2\overleftarrow A_2+2\overleftarrow A_2^2=F_{2s-1},
\end{aligned}
\right.
$$
$0\leq A_1\leq X$, $A_2\geq0$, satisfies the asymptotic formula
$$
n_s(X)\sim\frac{c_s}{\mathrm{arcosh}(1/\tau)}\ln X\quad\text{as}\quad X\to\infty.
$$
Here $\tau=(-1+\sqrt5)/2$ is the golden ratio, and $c_s=1/2$ or $1$ for $s=0$ or $s\geq1$, respectively.
Citation:
V. G. Zhuravlev, “Hyperbolas over two-dimensional Fibonacci quasilattices”, Fundam. Prikl. Mat., 16:6 (2010), 45–62; J. Math. Sci., 182:4 (2012), 472–483
Linking options:
https://www.mathnet.ru/eng/fpm1350 https://www.mathnet.ru/eng/fpm/v16/i6/p45
|
Statistics & downloads: |
Abstract page: | 321 | Full-text PDF : | 119 | References: | 47 | First page: | 1 |
|