Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2010, Volume 16, Issue 6, Pages 45–62 (Mi fpm1350)  

This article is cited in 3 scientific papers (total in 3 papers)

Hyperbolas over two-dimensional Fibonacci quasilattices

V. G. Zhuravlev

Vladimir State Pedagogical University
Full-text PDF (209 kB) Citations (3)
References:
Abstract: For the number $n_s(\alpha,\beta;X)$ of points $(x_1,x_2)$ in the two-dimensional Fibonacci quasilattices $\mathcal F^2_m$ of level $m=0,1,2,\dots$ lying on the hyperbola $x_1^2-\alpha x_2^2=\beta$ and such that $0\leq x_1\leq X$, $x_2\geq0$, the asymptotic formula
$$ n_s(\alpha,\beta;X)\sim c_s(\alpha,\beta)\ln X\quad\text{as}\quad X\to\infty $$
is established, the coefficient $c_s(\alpha,\beta)$ is calculated exactly. Using this, the following result is obtained. Let $F_m$ be the Fibonacci numbers, $A_i\in\mathbb N$, $i=1,2$, and let $\overleftarrow A_i$ be the shift of $A_i$ in the Fibonacci numeral system. Then the number $n_s(X)$ of all solutions $(A_1,A_2)$ of the Diophantine system
$$ \left\{ \begin{aligned} &A_1^2+\overleftarrow A_1^2-2A_2\overleftarrow A_2+\overleftarrow A_2^2=F_{2s},\\ &\overleftarrow A_1^2-2A_1\overleftarrow A_1+A_2^2-2A_2\overleftarrow A_2+2\overleftarrow A_2^2=F_{2s-1}, \end{aligned} \right. $$
$0\leq A_1\leq X$, $A_2\geq0$, satisfies the asymptotic formula
$$ n_s(X)\sim\frac{c_s}{\mathrm{arcosh}(1/\tau)}\ln X\quad\text{as}\quad X\to\infty. $$
Here $\tau=(-1+\sqrt5)/2$ is the golden ratio, and $c_s=1/2$ or $1$ for $s=0$ or $s\geq1$, respectively.
English version:
Journal of Mathematical Sciences (New York), 2012, Volume 182, Issue 4, Pages 472–483
DOI: https://doi.org/10.1007/s10958-012-0751-1
Bibliographic databases:
Document Type: Article
UDC: 511.342
Language: Russian
Citation: V. G. Zhuravlev, “Hyperbolas over two-dimensional Fibonacci quasilattices”, Fundam. Prikl. Mat., 16:6 (2010), 45–62; J. Math. Sci., 182:4 (2012), 472–483
Citation in format AMSBIB
\Bibitem{Zhu10}
\by V.~G.~Zhuravlev
\paper Hyperbolas over two-dimensional Fibonacci quasilattices
\jour Fundam. Prikl. Mat.
\yr 2010
\vol 16
\issue 6
\pages 45--62
\mathnet{http://mi.mathnet.ru/fpm1350}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2825516}
\elib{https://elibrary.ru/item.asp?id=20285255}
\transl
\jour J. Math. Sci.
\yr 2012
\vol 182
\issue 4
\pages 472--483
\crossref{https://doi.org/10.1007/s10958-012-0751-1}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84859496160}
Linking options:
  • https://www.mathnet.ru/eng/fpm1350
  • https://www.mathnet.ru/eng/fpm/v16/i6/p45
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:321
    Full-text PDF :119
    References:47
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024