Loading [MathJax]/jax/output/CommonHTML/jax.js
Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2010, Volume 74, Issue 2, Pages 281–323
DOI: https://doi.org/10.1070/IM2010v074n02ABEH002487
(Mi im621)
 

This article is cited in 3 scientific papers (total in 3 papers)

One-dimensional Fibonacci tilings and induced two-colour rotations of the circle

V. G. Zhuravlev

Vladimir State Pedagogical University
References:
Abstract: We study two-colour rotations Sε(a,b) of the unit circle that take x[0,1) to the point x+aτ if x[0,ε) and to x+bτ if x[ε,1). The rotations Sε(a,b) depend on discrete parameters a,bZ and a continuous parameter ε[0,1) and we choose τ to be the golden ratio 1+52. We shall show that the Sε(a,b) have an invariance property: the induced maps or first-return maps for Sε(a,b) are again two-colour rotations Sε(a,b) with renormalized parameters ε[0,1), a,bZ. Moreover, we find conditions under which the induced maps Sε(a,b) have the form Sε(a,b), that is, the Sε(a,b) are isomorphic to their induced maps and thus have another property, namely, that of self-similarity. We describe the structure of the attractor Att(Sε(a,b)) of a rotation Sε(a,b) and prove that the restriction of a rotation to its attractor is isomorphic to a certain family of integral isomorphisms Tε obtained by lifting the simple rotation of the circle S(x)=x+τ. A corollary is the uniform distribution of the Sε(a,b)-orbits on the attractor Att(Sε(a,b)). We find a connection between the measure of the attractor Att(Sε(a,b)) and the frequency distribution function νε(θ1,θ2) of points in Sε(a,b)-orbits over closed intervals [θ1,θ2][0,1). Explicit formulae for the frequency νε(θ1,θ2) are obtained in certain cases.
Keywords: Fibonacci tilings, double rotations of the circle, induced and integral maps, frequency distribution.
Received: 20.07.2004
Revised: 03.06.2008
Bibliographic databases:
Document Type: Article
UDC: 511.218
Language: English
Original paper language: Russian
Citation: V. G. Zhuravlev, “One-dimensional Fibonacci tilings and induced two-colour rotations of the circle”, Izv. Math., 74:2 (2010), 281–323
Citation in format AMSBIB
\Bibitem{Zhu10}
\by V.~G.~Zhuravlev
\paper One-dimensional Fibonacci tilings and induced two-colour rotations of the circle
\jour Izv. Math.
\yr 2010
\vol 74
\issue 2
\pages 281--323
\mathnet{http://mi.mathnet.ru/eng/im621}
\crossref{https://doi.org/10.1070/IM2010v074n02ABEH002487}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2675269}
\zmath{https://zbmath.org/?q=an:1196.37073}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010IzMat..74..281Z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277164200002}
\elib{https://elibrary.ru/item.asp?id=20358716}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953853355}
Linking options:
  • https://www.mathnet.ru/eng/im621
  • https://doi.org/10.1070/IM2010v074n02ABEH002487
  • https://www.mathnet.ru/eng/im/v74/i2/p65
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:538
    Russian version PDF:267
    English version PDF:25
    References:75
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025