Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 445, Pages 93–174 (Mi znsl6276)  

This article is cited in 6 scientific papers (total in 6 papers)

Bounded remainder sets

V. G. Zhuravlev

Vladimir State University, Vladimir, Russia
Full-text PDF (841 kB) Citations (6)
References:
Abstract: We consider the category $(\mathcal{T,S,X})$ consisting of transformations $\mathcal{S\colon T\to T}$ of spaces $\mathcal T$ with distinguished subsets $\mathcal{X\subset T}$. Let $r_\mathcal X(i,x_0)$ be the distribution function of points from the $\mathcal S$-orbit $x_0,x_1=\mathcal S(x_0),\dots,x_{i-1}=\mathcal S^{i-1}(x_0)$ got in $\mathcal X$, and a deviation $\delta_\mathcal X(i,x_0)$ be defined by the equation
$$ r_\mathcal X(i,x_0)=a_\mathcal Xi+\delta_\mathcal X(i,x_0), $$
where $a_\mathcal Xi$ is the average value. If $\delta_\mathcal X(i,x_0)=O(1)$ then such $\mathcal X$ are called bounded remainder sets. In this article the bounded remainder sets $\mathcal X$ are built in the following cases: 1) the space $\mathcal T$ is a circle, a torus or a Klein bottle; 2) the map $\mathcal S$ is a rotation of the circle, a shift or an exchange transformation of the torus; 3) the $\mathcal X$ is a fixed subset $\mathcal{X\subset T}$ or a sequence of subsets depending on the iteration step $i=0,1,2,\dots$
Key words and phrases: toric exchange, induced decomposition, bounded remainder sets.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00360
Received: 16.01.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 222, Issue 5, Pages 585–640
DOI: https://doi.org/10.1007/s10958-017-3322-7
Bibliographic databases:
Document Type: Article
UDC: 511
Language: Russian
Citation: V. G. Zhuravlev, “Bounded remainder sets”, Analytical theory of numbers and theory of functions. Part 31, Zap. Nauchn. Sem. POMI, 445, POMI, St. Petersburg, 2016, 93–174; J. Math. Sci. (N. Y.), 222:5 (2017), 585–640
Citation in format AMSBIB
\Bibitem{Zhu16}
\by V.~G.~Zhuravlev
\paper Bounded remainder sets
\inbook Analytical theory of numbers and theory of functions. Part~31
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 445
\pages 93--174
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6276}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3511160}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 222
\issue 5
\pages 585--640
\crossref{https://doi.org/10.1007/s10958-017-3322-7}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015706835}
Linking options:
  • https://www.mathnet.ru/eng/znsl6276
  • https://www.mathnet.ru/eng/znsl/v445/p93
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:281
    Full-text PDF :42
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024