Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 2016, Volume 445, Pages 33–92 (Mi znsl6275)  

This article is cited in 24 scientific papers (total in 24 papers)

Differentiation of induced toric tilings and multi-dimensional approximations of algebraic numbers

V. G. Zhuravlev

Vladimir State University, Vladimir, Russia
References:
Abstract: We consider the induced tilings $\mathcal{T=T}|_\mathrm{Kr}$ of the $D$-dimensional torus $\mathbb T^D$ generated by embedded karyons $\mathrm{Kr}$. The differentiations $\sigma\colon\mathcal{T\to T}^\sigma$ are defined under which we obtaine again the induced tilings $\mathcal T^\sigma=\mathcal T|_{\mathrm{Kr}^\sigma}$ with a derivative karyon $\mathrm{Kr}^\sigma$. They are used for approximation of $0\in\mathbb T^D$ by an infinite sequence of points $x_j\equiv j\alpha\mod\mathbb Z^D$ for $j=0,1,2,\dots$, where $\alpha=(\alpha_1,\dots,\alpha_D)$ is vector whose coordinates $\alpha_1,\dots,\alpha_D$ belong to an algebraic field $\mathbb Q(\theta)$ of degree $D+1$ over the rational field $\mathbb Q$. For this purpose, we construct an infinite sequence of convex parallelohedra $T^{(i)}\subset\mathbb T^D$ for $i=0,1,2,\dots$ and define for them some natural oders $m^{(0)}<m^{(1)}<\dots<m^{(i)}<\dots$ Then the above parallelohedra contain a subsequence of points $\{x_{j'}\}_{j'=1}^\infty$ that give the best approximation of $0\in\mathbb T^D$.
Key words and phrases: toric exchange, induced decomposition, best multi-dimensional approximations.
Funding agency Grant number
Russian Science Foundation 14-11-00433
Received: 16.01.2016
English version:
Journal of Mathematical Sciences (New York), 2017, Volume 222, Issue 5, Pages 544–584
DOI: https://doi.org/10.1007/s10958-017-3321-8
Bibliographic databases:
Document Type: Article
UDC: 511
Language: Russian
Citation: V. G. Zhuravlev, “Differentiation of induced toric tilings and multi-dimensional approximations of algebraic numbers”, Analytical theory of numbers and theory of functions. Part 31, Zap. Nauchn. Sem. POMI, 445, POMI, St. Petersburg, 2016, 33–92; J. Math. Sci. (N. Y.), 222:5 (2017), 544–584
Citation in format AMSBIB
\Bibitem{Zhu16}
\by V.~G.~Zhuravlev
\paper Differentiation of induced toric tilings and multi-dimensional approximations of algebraic numbers
\inbook Analytical theory of numbers and theory of functions. Part~31
\serial Zap. Nauchn. Sem. POMI
\yr 2016
\vol 445
\pages 33--92
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl6275}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3511159}
\transl
\jour J. Math. Sci. (N. Y.)
\yr 2017
\vol 222
\issue 5
\pages 544--584
\crossref{https://doi.org/10.1007/s10958-017-3321-8}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85015629041}
Linking options:
  • https://www.mathnet.ru/eng/znsl6275
  • https://www.mathnet.ru/eng/znsl/v445/p33
  • This publication is cited in the following 24 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:288
    Full-text PDF :50
    References:36
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024