Abstract:
The one-dimensional LL quasilattices F2=F×FF2=F×F lying in the square Fibonacci quasilattice are classified; here FF is the one-dimensional Fibonacci quasilattice. It is proved that there exists a countable set of similarity classes of quasilattices LL in F2F2 (fine classification), and also four classes of local equivalence (rough classification).
Asymptotic distributions of points in quasilattices LL are found and then applied to Diophantine equations involving the function [α][α] (the integral part of αα) and to equations of the form A1∘X1−A2∘X2=CA1∘X1−A2∘X2=C where the coefficients CC and AiAi and the variables take values in N={1,2,3,…} and ∘ is Knuth's circular multiplication.
Citation:
V. G. Zhuravlev, “One-dimensional Fibonacci quasilattices and their application to the Euclidean algorithm and Diophantine equations”, Algebra i Analiz, 19:3 (2007), 151–182; St. Petersburg Math. J., 19:3 (2008), 431–454
\Bibitem{Zhu07}
\by V.~G.~Zhuravlev
\paper One-dimensional Fibonacci quasilattices and their application to the Euclidean algorithm and Diophantine equations
\jour Algebra i Analiz
\yr 2007
\vol 19
\issue 3
\pages 151--182
\mathnet{http://mi.mathnet.ru/aa123}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2340709}
\zmath{https://zbmath.org/?q=an:1219.11033}
\transl
\jour St. Petersburg Math. J.
\yr 2008
\vol 19
\issue 3
\pages 431--454
\crossref{https://doi.org/10.1090/S1061-0022-08-01005-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267653300005}
Linking options:
https://www.mathnet.ru/eng/aa123
https://www.mathnet.ru/eng/aa/v19/i3/p151
This publication is cited in the following 13 articles:
A. A. Zhukova, A. V. Shutov, “Additivnaya zadacha s k chislami spetsialnogo vida”, Materialy IV Mezhdunarodnoi nauchnoi konferentsii “Aktualnye problemy prikladnoi matematiki”. Kabardino-Balkarskaya respublika, Nalchik, Prielbruse, 22–26 maya 2018 g. Chast II, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 166, VINITI RAN, M., 2019, 10–21
A. A. Zhukova, A. V. Shutov, “Geometrizatsiya sistem schisleniya”, Chebyshevskii sb., 18:4 (2017), 222–245
V. G. Zhuravlev, “Symmetrization of bounded remainder sets”, St. Petersburg Math. J., 28:4 (2017), 491–506
E. P. Davletyarova, A. A. Zhukova, A. V. Shutov, “Geometrizatsiya obobschennykh sistem schisleniya Fibonachchi i ee prilozheniya k teorii chisel”, Chebyshevskii sb., 17:2 (2016), 88–112
A. A. Zhukova, A. V. Shutov, “Binarnaya additivnaya zadacha s chislami spetsialnogo vida”, Chebyshevskii sb., 16:3 (2015), 246–275
E. P. Davletyarova, A. A. Zhukova, A. V. Shutov, “Geometrization of Fibonacci numeration system and its applications to number theory”, St. Petersburg Math. J., 25:6 (2014), 893–907
V. V. Krasil'shchikov, A. V. Shutov, “Distribution of points of one-dimensional quasilattices with respect to a variable module”, Russian Math. (Iz. VUZ), 56:3 (2012), 14–19
A. V. Shutov, “Trigonometricheskie summy nad odnomernymi kvazireshetkami”, Chebyshevskii sb., 13:2 (2012), 136–148
V. G. Zhuravlev, “Hyperbolas over two-dimensional Fibonacci quasilattices”, J. Math. Sci., 182:4 (2012), 472–483
A. V. Shutov, “Arifmetika i geometriya odnomernykh kvazireshetok”, Chebyshevskii sb., 11:1 (2010), 255–262
V. V. Krasil'shchikov, A. V. Shutov, V. G. Zhuravlev, “One-dimensional quasiperiodic tilings admitting progressions enclosure”, Russian Math. (Iz. VUZ), 53:7 (2009), 1–6
V. G. Zhuravlev, “Even Fibonacci numbers: the binary additive problem, the distribution over progressions, and the spectrum”, St. Petersburg Math. J., 20:3 (2009), 339–360
V. G. Zhuravlev, “The Pell equation over the ∘-Fibonacci ring”, J. Math. Sci. (N. Y.), 150:3 (2008), 2084–2095