Algebra i Analiz
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Algebra i Analiz:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Algebra i Analiz, 2008, Volume 20, Issue 3, Pages 18–46 (Mi aa512)  

This article is cited in 11 scientific papers (total in 11 papers)

Research Papers

Even Fibonacci numbers: the binary additive problem, the distribution over progressions, and the spectrum

V. G. Zhuravlev

Vladimir State Pedagogical University
References:
Abstract: The representations $\overrightarrow{N}_1+\overrightarrow{N}_2=D$ of a natural number $D$ as the sum of two even-Fibonacci numbers $\overrightarrow{N}_i=F_1 \circ N_i$, where $\circ$ is the circular Fibonacci multiplication, are considered. For the number $s(D)$ of solutions, the asymptotic formula $s(D)=c(D)D+r(D)$ is proved; here $c(D)$ is a continuous, piecewise linear function and the remainder $r(D)$ satisfies the inequality
$$ |r(D)|\leq 5+\Bigl(\frac{1}{\ln 1/\tau}+\frac{1}{\ln 2}\Bigr)\ln D, $$
where $\tau$ is the golden section.
The problem concerning the distribution of even-Fibonacci numbers $\overrightarrow{N}$ over arithmetic progressions $\overrightarrow{N}\equiv r\;\mathrm{mod}\;d$ is also studied. Let $l_{F_1}(d,r,X)$ be the number of $N's$, $0 \leq N \leq X$, satisfying the above congruence. Then the asymptotic formula
$$ l_{F_1}(d,r,X)=\frac{X}{d}+c(d)\ln X $$
is true, where $c(d)=O(d\ln d)$ and the constant in $O$ does not depend on $X$$d$$r$. In particular, this formula implies the uniformity of the distribution of the even-Fibonacci numbers over progressions for all differences $d=O(\frac{X^{1/2}}{\ln X})$.
The set $\overrightarrow{\mathbb{Z}}$ of even-Fibonacci numbers is an integral modification of the well-known one-dimensional Fibonacci quasilattice $\mathcal{F}$. Like $\mathcal{F}$, the set $\overrightarrow{\mathbb{Z}}$ is a quasilattice, but it is not a model set. However, it is shown that the spectra $\Lambda_{\mathcal{F}}$ and $\Lambda_{\overrightarrow{\mathbb{Z}}}$ coincide up to a scale factor $\nu=1+\tau^2$, and an explicit formula is obtained for the structural amplitudes $f_{\overrightarrow{\mathbb{Z}}}(\lambda)$, where $\lambda=a+b \tau$ lies in the spectrum:
$$ f_{\overrightarrow{\mathbb{Z}}}(\lambda)=\frac{\sin(\pi b\tau)}{\pi b\tau}\exp(-3\pi i\;b\tau). $$
Keywords: Even-Fibonacci numbers, Fibonacci quasilattices, Fibonacci circular multiplication, Diophantine equations, spectrum.
Received: 05.06.2007
English version:
St. Petersburg Mathematical Journal, 2009, Volume 20, Issue 3, Pages 339–360
DOI: https://doi.org/10.1090/S1061-0022-09-01051-6
Bibliographic databases:
Document Type: Article
MSC: 06A11
Language: Russian
Citation: V. G. Zhuravlev, “Even Fibonacci numbers: the binary additive problem, the distribution over progressions, and the spectrum”, Algebra i Analiz, 20:3 (2008), 18–46; St. Petersburg Math. J., 20:3 (2009), 339–360
Citation in format AMSBIB
\Bibitem{Zhu08}
\by V.~G.~Zhuravlev
\paper Even Fibonacci numbers: the binary additive problem, the distribution over progressions, and the spectrum
\jour Algebra i Analiz
\yr 2008
\vol 20
\issue 3
\pages 18--46
\mathnet{http://mi.mathnet.ru/aa512}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2454451}
\zmath{https://zbmath.org/?q=an:1206.11020}
\elib{https://elibrary.ru/item.asp?id=11149937}
\transl
\jour St. Petersburg Math. J.
\yr 2009
\vol 20
\issue 3
\pages 339--360
\crossref{https://doi.org/10.1090/S1061-0022-09-01051-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000267497700002}
Linking options:
  • https://www.mathnet.ru/eng/aa512
  • https://www.mathnet.ru/eng/aa/v20/i3/p18
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Алгебра и анализ St. Petersburg Mathematical Journal
    Statistics & downloads:
    Abstract page:525
    Full-text PDF :145
    References:73
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024