S. S. Volosivets, “Integrability and Boas type results for a generalized Fourier–Bessel transform”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 9, 3–15
2.
N. Yu. Agafonova, S. S. Volosivets, “Integrability of series with respect to multiplicative systems and generalized derivatives”, Izv. Vyssh. Uchebn. Zaved. Mat., 2024, no. 3, 3–14
3.
S. S. Volosivets, “Generalized Multiple Multiplicative Fourier Transform and Estimates of Integral Moduli of Continuity”, Mat. Zametki, 115:4 (2024), 578–588; Math. Notes, 115:4 (2024), 528–537
4.
S. S. Volosivets, “Estimates for the second Hankel–Clifford transform and Titchmarsh equivalence theorem”, Probl. Anal. Issues Anal., 13(31):2 (2024), 144–154
2023
5.
S. S. Volosivets, Yu. I. Krotova, “Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and $q$-Bessel Fourier Transform”, Mat. Zametki, 114:1 (2023), 68–80; Math. Notes, 114:1 (2023), 55–65
S. S. Volosivets, “Polynomial approximation with respect to multiplicative systems in the Morrey space”, Sibirsk. Mat. Zh., 64:1 (2023), 40–55; Siberian Math. J., 64:1 (2023), 33–47
S. S. Volosivets, “Realization functionals and description of a modulus of smoothness in variable exponent Lebesgue spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2022, no. 6, 13–25; Russian Math. (Iz. VUZ), 66:6 (2022), 8–19
S. S. Volosivets, B. I. Golubov, “Weighted Integrability of Multiple Multiplicative Fourier Transforms”, Mat. Zametki, 111:3 (2022), 365–374; Math. Notes, 111:3 (2022), 364–372
S. S. Volosivets, “Approximation by linear means of Fourier series and realization functionals in weighted Orlicz spaces”, Probl. Anal. Issues Anal., 11(29):2 (2022), 106–118
S. S. Volosivets, A. N. Mingachev, “Generalized absolute convergence of Fourier series with respect to multiplicative systems of functions of generalized bounded fluctuation”, Trudy Inst. Mat. i Mekh. UrO RAN, 28:4 (2022), 78–90
12.
B. I. Golubov, S. S. Volosivets, “Fourier Transforms of Convolutions of Functions in Lebesgue and Lorentz Spaces”, Trudy Mat. Inst. Steklova, 319 (2022), 94–105; Proc. Steklov Inst. Math., 319 (2022), 85–96
2021
13.
S. S. Volosivets, A. A. Tyuleneva, “Approximation properties of partial Fourier sums in the $p$-variation metric”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 200 (2021), 29–35
14.
B. I. Golubov, S. S. Volosivets, “Fourier transform and continuity of functions of bounded $\Phi$-variation”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 199 (2021), 43–49
15.
S. S. Volosivets, S. A. Krayukhin, “Criteria for a Function to Belong to the $p$-Variational Besov Space”, Mat. Zametki, 109:1 (2021), 27–35; Math. Notes, 109:1 (2021), 21–28
16.
S. S. Volosivets, “Modified modulus of smoothness and approximation in weighted Lorentz spaces by Borel and Euler means”, Probl. Anal. Issues Anal., 10(28):1 (2021), 87–100
S. S. Volosivets, “Hausdorff operators of special kind in $BMO$-type spaces and Hölder–Lipschitz spaces”, Izv. Vyssh. Uchebn. Zaved. Mat., 2020, no. 12, 8–21; Russian Math. (Iz. VUZ), 64:12 (2020), 6–19
19.
S. S. Volosivets, M. A. Kuznetsova, “Generalized Absolute Convergence of Single and Double Series in Multiplicative Systems”, Mat. Zametki, 107:2 (2020), 195–209; Math. Notes, 107:2 (2020), 217–230
S. S. Volosivets, B. I. Golubov, “Modified Hardy and Hardy–Littlewood fractional operators in Morrey–Herz spaces and their commutators in weighted spaces”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 171 (2019), 70–77
S. S. Volosivets, N. N. Zaitsev, “Martingale inequalities in symmetric spaces with semimultiplicative weight”, Izv. Saratov Univ. Math. Mech. Inform., 19:2 (2019), 126–133
22.
S. S. Volosivets, B. I. Golubov, “Fractional modified Hardy and Hardy–Littlewood operators and their commutators”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 9, 16–26; Russian Math. (Iz. VUZ), 63:9 (2019), 12–21
S. S. Volosivets, “Double cosine-sine series and Nikol'skii classes in uniform metric”, Probl. Anal. Issues Anal., 8(26):3 (2019), 187–203
2018
24.
S. S. Volosivets, A. A. Tyuleneva, “Estimates of best approximations of transformed Fourier series in $L^p$-norm and $p$-variational norm”, Fundam. Prikl. Mat., 22:1 (2018), 111–126; J. Math. Sci., 250:3 (2020), 463–474
25.
S. S. Volosivets, B. I. Golubov, “Generalized absolute convergence of series from Fourier coeficients by systems of Haar type”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 1, 10–20; Russian Math. (Iz. VUZ), 62:1 (2018), 7–16
S. S. Volosivets, A. E. Vezhlev, “Embeddings of generalized bounded variation function spaces into spaces of functions with given majorant of average modulus of continuity”, Izv. Saratov Univ. Math. Mech. Inform., 17:3 (2017), 255–266
27.
S. S. Volosivets, M. A. Kuznetsova, “Multiplicative convolutions of functions from Lorentz spaces and convergence of series from Fourier–Vilenkin coefficients”, Izv. Vyssh. Uchebn. Zaved. Mat., 2017, no. 5, 32–44; Russian Math. (Iz. VUZ), 61:5 (2017), 26–37
28.
S. S. Volosivets, “Series in Multiplicative Systems in Lorentz Spaces”, Mat. Zametki, 102:3 (2017), 339–354; Math. Notes, 102:3 (2017), 310–324
S. S. Volosivets, “Approximation of functions and their conjugates in variable Lebesgue spaces”, Mat. Sb., 208:1 (2017), 48–64; Sb. Math., 208:1 (2017), 44–59
S. S. Volosivets, “Approximation of Polynomials in the Haar System in Weighted Symmetric Spaces”, Mat. Zametki, 99:5 (2016), 649–657; Math. Notes, 99:5 (2016), 643–651
S. S. Volosivets, T. V. Likhacheva, “Sidon-type inequalities and strong approximation by Fourier sums in multiplicative systems”, Sibirsk. Mat. Zh., 57:3 (2016), 617–631; Siberian Math. J., 57:3 (2016), 486–497
S. S. Volosivets, T. V. Likhacheva, “Several questions of approximation by polynomials with respect to multiplicative systems in weighted $L^p$ spaces”, Izv. Saratov Univ. Math. Mech. Inform., 15:3 (2015), 251–258
S. S. Volosivets, “Hardy–Goldberg operator and its conjugate one in Hardy spaces and $BMO(\mathbb T)$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2015, no. 2, 18–29; Russian Math. (Iz. VUZ), 59:2 (2015), 14–24
S. S. Volosivets, B. I. Golubov, “Uniform Convergence and Integrability of Multiplicative Fourier Transforms”, Mat. Zametki, 98:1 (2015), 44–60; Math. Notes, 98:1 (2015), 53–67
S. S. Volosivets, “Approximation by polynomials with respect to multiplicative systems in weighted $L^p$-spaces”, Sibirsk. Mat. Zh., 56:1 (2015), 82–93; Siberian Math. J., 56:1 (2015), 68–77
S. S. Volosivets, “Modified Bessel ${\mathbf P}$-integrals and $\mathbf P$-derivatives and their properties”, Izv. RAN. Ser. Mat., 78:5 (2014), 27–52; Izv. Math., 78:5 (2014), 877–901
37.
S. S. Volosivets, “Embedding Theorems for $\mathbf{P}$-nary Hardy and $VMO$ Spaces”, Izv. Saratov Univ. Math. Mech. Inform., 14:4(2) (2014), 518–525
38.
S. S. Volosivets, R. N. Fadeev, “Weighted integrability of sums of series with respect to multiplicative systems”, Izv. Saratov Univ. Math. Mech. Inform., 14:2 (2014), 129–136
2013
39.
S. S. Volosivets, R. N. Fadeev, “Weighted integrability of double series with respect to multiplicative systems”, Fundam. Prikl. Mat., 18:5 (2013), 69–87; J. Math. Sci., 209:1 (2015), 51–65
40.
S. S. Volosivets, “Identities of Titchmarsh Type for Generalized Hardy and Hardy–Littlewood Operators”, Izv. Saratov Univ. Math. Mech. Inform., 13:1(2) (2013), 28–33
S. S. Volosivets, “Hausdorff Operators on $p$-Adic Linear Spaces and Their Properties in Hardy, $BMO$, and Hölder Spaces”, Mat. Zametki, 93:3 (2013), 357–367; Math. Notes, 93:3 (2013), 382–391
S. S. Volosivets, B. I. Golubov, “Fourier transforms in generalized Lipschitz classes”, Trudy Mat. Inst. Steklova, 280 (2013), 126–137; Proc. Steklov Inst. Math., 280 (2013), 120–131
S. S. Volosivets, “The weighted $L^1$-integrability of functions and the Parseval equality with respect to multiplicative systems”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 8, 15–26; Russian Math. (Iz. VUZ), 56:8 (2012), 11–21
44.
S. S. Volosivets, “The modified $\mathbf P$-integral and $\mathbf P$-derivative and their applications”, Mat. Sb., 203:5 (2012), 3–32; Sb. Math., 203:5 (2012), 613–644
S. S. Volosivets, “Modified Hardy and Hardy–Littlewood operators and their behaviour in various spaces”, Izv. RAN. Ser. Mat., 75:1 (2011), 29–52; Izv. Math., 75:1 (2011), 29–51
S. S. Volosivets, “On weighted analogs of Wiener's and Levy's theorems for Fourier–Vilenkin series”, Izv. Saratov Univ. Math. Mech. Inform., 11:3(1) (2011), 3–7
47.
S. S. Volosivets, “Generalization of the Multiplicative Fourier Transform and Its Properties”, Mat. Zametki, 89:3 (2011), 323–330; Math. Notes, 89:3 (2011), 311–318
S. S. Volosivets, B. I. Golubov, “Weighted integrability of multiplicative Fourier transforms”, Trudy Mat. Inst. Steklova, 269 (2010), 71–81; Proc. Steklov Inst. Math., 269 (2010), 65–75
S. S. Volosivets, “Absolute convergence of single and double Fourier series on multiplicative systems”, Izv. Saratov Univ. Math. Mech. Inform., 9:3 (2009), 7–14
50.
S. S. Volosivets, “Applications of $\mathbf P$-adic generalized functions and approximations by a system of $\mathbf P$-adic translations of a function”, Sibirsk. Mat. Zh., 50:1 (2009), 3–18; Siberian Math. J., 50:1 (2009), 1–13
S. S. Volosivets, “On convergence of Fourier–Vilenkin series in $L^p[0,1)$, $0<p\le1$”, Izv. Saratov Univ. Math. Mech. Inform., 8:3 (2008), 3–9
52.
S. S. Volosivets, “Convergence of series of Fourier coefficients for multiplicative convolutions”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 11, 27–39; Russian Math. (Iz. VUZ), 52:11 (2008), 23–34
S. S. Volosivets, B. I. Golubov, “Hardy and Bellman operators in spaces connected with $H(\mathbb T)$ and $BMO(\mathbb T)$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5, 4–13; Russian Math. (Iz. VUZ), 52:5 (2008), 1–8
S. S. Volosivets, “Hardy and Bellman transformations of series with respect to multiplicative systems”, Mat. Sb., 199:8 (2008), 3–28; Sb. Math., 199:8 (2008), 1111–1137
N. Yu. Agafonova, S. S. Volosivets, “Multipliers of Convergence in Norm of Series with Respect to Multiplicative Systems”, Mat. Zametki, 82:4 (2007), 483–494; Math. Notes, 82:4 (2007), 433–442
2006
56.
S. S. Volosivets, “The modified multiplicative integral and derivative of arbitrary order on the semiaxis”, Izv. RAN. Ser. Mat., 70:2 (2006), 3–24; Izv. Math., 70:2 (2006), 211–231
S. S. Volosivets, “Refined theorems of approximation theory in the space of $p$-absolutely continuous functions”, Mat. Zametki, 80:5 (2006), 701–711; Math. Notes, 80:5 (2006), 663–672
S. S. Volosivets, “Convergence of fourier series with respect to multiplicative systems and the $p$-fluctuation continuity modulus”, Sibirsk. Mat. Zh., 47:2 (2006), 241–258; Siberian Math. J., 47:2 (2006), 193–208
S. S. Volosivets, “A modified $\mathbf P$-adic integral and a modified $\mathbf P$-adic derivative for functions defined on a half-axis”, Izv. Vyssh. Uchebn. Zaved. Mat., 2005, no. 6, 28–39; Russian Math. (Iz. VUZ), 49:6 (2005), 25–36
S. S. Volosivets, “Specifications of direct and inverse approximation theorems for $p$-absolutely continuous functions”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1998, no. 5, 55–56
1997
61.
S. S. Volosivets, “Approximation of functions of bounded $p$-variation by polynomials in terms of the Faber–Schauder system”, Mat. Zametki, 62:3 (1997), 363–371; Math. Notes, 62:3 (1997), 306–313
S. S. Volosivets, “Polynomials of best approximation and relations between moduli of continuity in spaces of functions of bounded $p$-variation”, Izv. Vyssh. Uchebn. Zaved. Mat., 1996, no. 9, 21–26; Russian Math. (Iz. VUZ), 40:9 (1996), 18–23
S. S. Volosivets, “Asymptotic properties of one compact set of smooth functions in the space of functions of bounded $p$-variation”, Mat. Zametki, 57:2 (1995), 214–227; Math. Notes, 57:2 (1995), 148–157
S. S. Volosivets, “Approximation of functions of bounded $p$-variation by means of polynomials of the Haar and Walsh systems”, Mat. Zametki, 53:6 (1993), 11–21; Math. Notes, 53:6 (1993), 569–575
S. S. Volosivets, “On the $\varepsilon$-entropy of some sets of functions of bounded $p$-variation”, Izv. Vyssh. Uchebn. Zaved. Mat., 1992, no. 2, 83–85; Russian Math. (Iz. VUZ), 36:2 (1992), 83–85
S. S. Volosivets, “On the $\varepsilon$-entropy and widths of a compact set of smooth functions in the space of functions of bounded $p$-variation”, Vestnik Moskov. Univ. Ser. 1. Mat. Mekh., 1992, no. 5, 81–84