Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2023, Volume 114, Issue 1, Pages 68–80
DOI: https://doi.org/10.4213/mzm13467
(Mi mzm13467)
 

This article is cited in 3 scientific papers (total in 3 papers)

Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and q-Bessel Fourier Transform

S. S. Volosivets, Yu. I. Krotova

Saratov State University
Full-text PDF (622 kB) Citations (3)
References:
Abstract: Necessary and sufficient conditions for a function f to belong to the generalized Lipschitz classes Hq,νm,ω and hq,νm,ω for fractional m are given in terms of its q-Bessel–Fourier transform Fq,ν(f). Dual results are considered as well. An analog of the Titchmarsh theorem for fractional-order differences is proved.
Keywords: generalized Lipschitz class, Fourier transform, q-Bessel–Fourier transform.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075-02-2023-949
The first author's research was supported by the Development Program of the Regional Scientific-Educational Center “Mathematics for Future Technology” (project no. 075-02-2023-949).
Received: 26.02.2022
Revised: 10.03.2022
English version:
Mathematical Notes, 2023, Volume 114, Issue 1, Pages 55–65
DOI: https://doi.org/10.1134/S0001434623070052
Bibliographic databases:
Document Type: Article
UDC: 517.444
MSC: 26D15, 42B35, 33D15
Language: Russian
Citation: S. S. Volosivets, Yu. I. Krotova, “Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and q-Bessel Fourier Transform”, Mat. Zametki, 114:1 (2023), 68–80; Math. Notes, 114:1 (2023), 55–65
Citation in format AMSBIB
\Bibitem{VolKro23}
\by S.~S.~Volosivets, Yu.~I.~Krotova
\paper Boas and Titchmarsh Type Theorems for Generalized Lipschitz Classes and $q$-Bessel Fourier Transform
\jour Mat. Zametki
\yr 2023
\vol 114
\issue 1
\pages 68--80
\mathnet{http://mi.mathnet.ru/mzm13467}
\crossref{https://doi.org/10.4213/mzm13467}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4554799}
\transl
\jour Math. Notes
\yr 2023
\vol 114
\issue 1
\pages 55--65
\crossref{https://doi.org/10.1134/S0001434623070052}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85168564883}
Linking options:
  • https://www.mathnet.ru/eng/mzm13467
  • https://doi.org/10.4213/mzm13467
  • https://www.mathnet.ru/eng/mzm/v114/i1/p68
  • This publication is cited in the following 3 articles:
    1. Sergey Volosivets, Yulia Krotova, “Direct and inverse approximation theorems connected with the q-Bessel Fourier transform in weighted L2 space”, Ramanujan J, 66:2 (2025)  crossref
    2. Othman Tyr, “Decay of q-Dunkl transforms and generalized Lipschitz spaces”, Ramanujan J, 66:2 (2025)  crossref
    3. Sergey Volosivets, “Generalized Lipschitz classes in uniform metric and q-Dunkl Fourier transforms”, Anal.Math.Phys., 14:6 (2024)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:214
    Full-text PDF :53
    Russian version HTML:158
    References:47
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025