Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2015, Volume 56, Number 1, Pages 82–93 (Mi smj2622)  

This article is cited in 4 scientific papers (total in 4 papers)

Approximation by polynomials with respect to multiplicative systems in weighted $L^p$-spaces

S. S. Volosivets

Saratov State University, Saratov, Russia
Full-text PDF (327 kB) Citations (4)
References:
Abstract: We study best approximations of polynomials with respect to multiplicative systems in the $L^p$-spaces with Muckenhoupt weights. Using Jackson's and Bernstein's inequalities, we obtain the direct and inverse approximation theorems in terms of the $K$-functional and the inverse theorem of the Timan–Besov type. In the case of a power weight, we give a criterion for the membership of a function in the weighted $L^p$-space in terms of the Fourier coefficients with respect to multiplicative systems.
Keywords: multiplicative system, weighted $L^p$-space, $K$-functional, Jackson inequality, Bernstein inequality, generalized monotone sequence.
Received: 18.07.2012
English version:
Siberian Mathematical Journal, 2015, Volume 56, Issue 1, Pages 68–77
DOI: https://doi.org/10.1134/S0037446615010061
Bibliographic databases:
Document Type: Article
UDC: 517.518.36
Language: Russian
Citation: S. S. Volosivets, “Approximation by polynomials with respect to multiplicative systems in weighted $L^p$-spaces”, Sibirsk. Mat. Zh., 56:1 (2015), 82–93; Siberian Math. J., 56:1 (2015), 68–77
Citation in format AMSBIB
\Bibitem{Vol15}
\by S.~S.~Volosivets
\paper Approximation by polynomials with respect to multiplicative systems in weighted $L^p$-spaces
\jour Sibirsk. Mat. Zh.
\yr 2015
\vol 56
\issue 1
\pages 82--93
\mathnet{http://mi.mathnet.ru/smj2622}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3407940}
\elib{https://elibrary.ru/item.asp?id=23112823}
\transl
\jour Siberian Math. J.
\yr 2015
\vol 56
\issue 1
\pages 68--77
\crossref{https://doi.org/10.1134/S0037446615010061}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000350510300006}
\elib{https://elibrary.ru/item.asp?id=24027312}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84928805369}
Linking options:
  • https://www.mathnet.ru/eng/smj2622
  • https://www.mathnet.ru/eng/smj/v56/i1/p82
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024