Abstract:
In this paper, we prove direct and inverse theorems of approximation theory in the space of pp-absolutely continuous functions which generalize Terekhin's results in the same way as Timan's results in LpLp generalize the classical theorems of approximation theory. The main theorems are refined for functions with quasimonotone Fourier coefficients and, in a number of cases, the resulats are shown to be sharp.
Citation:
S. S. Volosivets, “Refined theorems of approximation theory in the space of pp-absolutely continuous functions”, Mat. Zametki, 80:5 (2006), 701–711; Math. Notes, 80:5 (2006), 663–672
\Bibitem{Vol06}
\by S.~S.~Volosivets
\paper Refined theorems of approximation theory in the space of $p$-absolutely continuous functions
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 5
\pages 701--711
\mathnet{http://mi.mathnet.ru/mzm3079}
\crossref{https://doi.org/10.4213/mzm3079}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2311584}
\zmath{https://zbmath.org/?q=an:1127.41001}
\elib{https://elibrary.ru/item.asp?id=9309626}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 5
\pages 663--672
\crossref{https://doi.org/10.1007/s11006-006-0187-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243368900006}
\elib{https://elibrary.ru/item.asp?id=13514460}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845671381}
Linking options:
https://www.mathnet.ru/eng/mzm3079
https://doi.org/10.4213/mzm3079
https://www.mathnet.ru/eng/mzm/v80/i5/p701
This publication is cited in the following 7 articles:
S. S. Volosivets, S. A. Krayukhin, “Criteria for a Function to Belong to the pp-Variational Besov Space”, Math. Notes, 109:1 (2021), 21–28
Golubov B. Volosivets S., “On Some Sharp Conditions For Generalized Absolute Convergence of Fourier Series”, Trans. A Razmadze Math. Inst., 175:3 (2021), 347–355
Volosivets S.S. Tyuleneva A.A., “Approximation of Functions and Their Conjugates in l-P and Uniform Metric By Euler Means”, Demonstr. Math., 51:1 (2018), 141–150
S. S. Volosivets, A. A. Tyuleneva, “Estimates of best approximations of transformed Fourier series in LpLp-norm and pp-variational norm”, J. Math. Sci., 250:3 (2020), 463–474
A. A. Tyuleneva, “Asymptotic estimates of pp-variational and LpLp-moduli of continuity of functions of certain classes”, Russian Math. (Iz. VUZ), 60:11 (2016), 58–68