Abstract:
In this paper, we prove direct and inverse theorems of approximation theory in the space of $p$-absolutely continuous functions which generalize Terekhin's results in the same way as Timan's results in $L_p$ generalize the classical theorems of approximation theory. The main theorems are refined for functions with quasimonotone Fourier coefficients and, in a number of cases, the resulats are shown to be sharp.
Citation:
S. S. Volosivets, “Refined theorems of approximation theory in the space of $p$-absolutely continuous functions”, Mat. Zametki, 80:5 (2006), 701–711; Math. Notes, 80:5 (2006), 663–672
\Bibitem{Vol06}
\by S.~S.~Volosivets
\paper Refined theorems of approximation theory in the space of $p$-absolutely continuous functions
\jour Mat. Zametki
\yr 2006
\vol 80
\issue 5
\pages 701--711
\mathnet{http://mi.mathnet.ru/mzm3079}
\crossref{https://doi.org/10.4213/mzm3079}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2311584}
\zmath{https://zbmath.org/?q=an:1127.41001}
\elib{https://elibrary.ru/item.asp?id=9309626}
\transl
\jour Math. Notes
\yr 2006
\vol 80
\issue 5
\pages 663--672
\crossref{https://doi.org/10.1007/s11006-006-0187-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000243368900006}
\elib{https://elibrary.ru/item.asp?id=13514460}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33845671381}
Linking options:
https://www.mathnet.ru/eng/mzm3079
https://doi.org/10.4213/mzm3079
https://www.mathnet.ru/eng/mzm/v80/i5/p701
This publication is cited in the following 7 articles:
S. S. Volosivets, S. A. Krayukhin, “Criteria for a Function to Belong to the $p$-Variational Besov Space”, Math. Notes, 109:1 (2021), 21–28
Golubov B. Volosivets S., “On Some Sharp Conditions For Generalized Absolute Convergence of Fourier Series”, Trans. A Razmadze Math. Inst., 175:3 (2021), 347–355
Volosivets S.S. Tyuleneva A.A., “Approximation of Functions and Their Conjugates in l-P and Uniform Metric By Euler Means”, Demonstr. Math., 51:1 (2018), 141–150
S. S. Volosivets, A. A. Tyuleneva, “Estimates of best approximations of transformed Fourier series in $L^p$-norm and $p$-variational norm”, J. Math. Sci., 250:3 (2020), 463–474
A. A. Tyuleneva, “Asymptotic estimates of $p$-variational and $L^p$-moduli of continuity of functions of certain classes”, Russian Math. (Iz. VUZ), 60:11 (2016), 58–68