Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2015, Volume 98, Issue 1, Pages 44–60
DOI: https://doi.org/10.4213/mzm10691
(Mi mzm10691)
 

This article is cited in 1 scientific paper (total in 1 paper)

Uniform Convergence and Integrability of Multiplicative Fourier Transforms

S. S. Volosivetsa, B. I. Golubovb

a Saratov State University named after N. G. Chernyshevsky
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Moscow region
Full-text PDF (547 kB) Citations (1)
References:
Abstract: For multiplicative Fourier transforms, analogs of results obtained by R. P. Boas, F. Moricz, M. I. D'yachenko, I. P. Liflyand, and S. Yu. Tikhonov and dealing with conditions for the uniform convergence and weighted integrability with power weight of classical Fourier transforms as well as conditions for these transforms to belong to Lipschitz classes are proved. Certain results of C. W. Onneweer concerning conditions for multiplicative Fourier transforms to belong to Lipschitz–Besov and Herz spaces are also generalized.
Keywords: multiplicative Fourier transform, weighted integrability of Fourier transforms, Lipschitz class, Lipschitz–Besov space, Herz space, Dirichlet kernel, Hölder's inequality, Hardy's inequality, Minkowski's inequality.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.1520.2014/K
Russian Foundation for Basic Research 14-01-00417
The work of the first author was supported by the Ministry of Education and Science of the Russian Federation (grant no. 1.1520.2014/K). The work of the second author was supported by the Russian Foundation for Basic Research (grant no. 14-01-00417) and by the program "Contemporary Problems of Analysis and Mathematical Physics" of the Ministry of Education and Science of the Russian Federation.
Received: 27.09.2014
English version:
Mathematical Notes, 2015, Volume 98, Issue 1, Pages 53–67
DOI: https://doi.org/10.1134/S0001434615070056
Bibliographic databases:
Document Type: Article
UDC: 517.518
Language: Russian
Citation: S. S. Volosivets, B. I. Golubov, “Uniform Convergence and Integrability of Multiplicative Fourier Transforms”, Mat. Zametki, 98:1 (2015), 44–60; Math. Notes, 98:1 (2015), 53–67
Citation in format AMSBIB
\Bibitem{VolGol15}
\by S.~S.~Volosivets, B.~I.~Golubov
\paper Uniform Convergence and Integrability of Multiplicative Fourier Transforms
\jour Mat. Zametki
\yr 2015
\vol 98
\issue 1
\pages 44--60
\mathnet{http://mi.mathnet.ru/mzm10691}
\crossref{https://doi.org/10.4213/mzm10691}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3399158}
\elib{https://elibrary.ru/item.asp?id=24073714}
\transl
\jour Math. Notes
\yr 2015
\vol 98
\issue 1
\pages 53--67
\crossref{https://doi.org/10.1134/S0001434615070056}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000360070400005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84940118459}
Linking options:
  • https://www.mathnet.ru/eng/mzm10691
  • https://doi.org/10.4213/mzm10691
  • https://www.mathnet.ru/eng/mzm/v98/i1/p44
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:473
    Full-text PDF :188
    References:82
    First page:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024