Sibirskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Sibirsk. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sibirskii Matematicheskii Zhurnal, 2021, Volume 62, Number 1, Pages 42–54
DOI: https://doi.org/10.33048/smzh.2021.62.104
(Mi smj7536)
 

This article is cited in 1 scientific paper (total in 1 paper)

Ulyanov-type embedding theorems for functions on zero-dimensional locally compact groups

S. S. Volosivets

N. G. Chernyshevsky Saratov State University, Saratov
Full-text PDF (479 kB) Citations (1)
References:
Abstract: We establish some analogs of Ulyanov's and Andrienko's Theorems on the embedding of the Hölder spaces of integrable functions on zero-dimensional second countable locally compact groups into the Lebesgue spaces or other Hölder spaces. We prove that these results are unimprovable.
Keywords: embedding theorems, continuity modulus, Lebesgue space $L^p$, Hölder space.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation FSRR-2020-0006
The author was supported by the Russian Ministry for Education and Science (Contract FSRR–2020–0006).
Received: 16.06.2020
Revised: 16.06.2020
Accepted: 09.10.2020
English version:
Siberian Mathematical Journal, 2021, Volume 62, Issue 1, Pages 32–43
DOI: https://doi.org/10.1134/S0037446621010043
Bibliographic databases:
Document Type: Article
UDC: 517.518.28
MSC: 35R30
Language: Russian
Citation: S. S. Volosivets, “Ulyanov-type embedding theorems for functions on zero-dimensional locally compact groups”, Sibirsk. Mat. Zh., 62:1 (2021), 42–54; Siberian Math. J., 62:1 (2021), 32–43
Citation in format AMSBIB
\Bibitem{Vol21}
\by S.~S.~Volosivets
\paper Ulyanov-type embedding theorems for functions on zero-dimensional locally compact groups
\jour Sibirsk. Mat. Zh.
\yr 2021
\vol 62
\issue 1
\pages 42--54
\mathnet{http://mi.mathnet.ru/smj7536}
\crossref{https://doi.org/10.33048/smzh.2021.62.104}
\elib{https://elibrary.ru/item.asp?id=44984786}
\transl
\jour Siberian Math. J.
\yr 2021
\vol 62
\issue 1
\pages 32--43
\crossref{https://doi.org/10.1134/S0037446621010043}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000613460200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85099912303}
Linking options:
  • https://www.mathnet.ru/eng/smj7536
  • https://www.mathnet.ru/eng/smj/v62/i1/p42
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Сибирский математический журнал Siberian Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024