Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Vyssh. Uchebn. Zaved. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2008, Number 5, Pages 4–13 (Mi ivm1273)  

This article is cited in 1 scientific paper (total in 1 paper)

Hardy and Bellman operators in spaces connected with $H(\mathbb T)$ and $BMO(\mathbb T)$

S. S. Volosivetsa, B. I. Golubovb

a Chair of Theory of Functions and Approximations, Faculty of Mathematics and Mechanics, Saratov State University
b Chair of Higher Mathematics, Moscow Physical Engineering Institute, Dolgoprudnyi, Moscow region, Russia
Full-text PDF (209 kB) Citations (1)
References:
Abstract: Assume that $1\leq p<\infty$ and the function $f\in L^p[0,\pi]$ has the Fourier series $\sum\limits^\infty_{n=1}a_n\cos nx$. According to Hardy, the series $\sum\limits^\infty_{n=1}n^{-1}\sum\limits^n_{k=1}a_k\cos nx$ is the Fourier series of a certain function $\mathcal H(f)\in L^p[0,\pi]$. But if $1< p\le \infty$ and $f\in L^p[0,\pi]$, then the series $\sum\limits^\infty_{n=1}\sum\limits^\infty_{k=n}k^{-1}a_k\cos nx$ is the Fourier series of a certain function $\mathcal B(f)\in L^p[0,\pi]$. Similar assertions are true for sine series. This allows one to define the Hardy operator $\mathcal H$ on $L^p(\mathbb T)$, $1\le p<\infty$, and to define the Bellman operator $\mathcal B$ on $L^p(\mathbb T)$, $1< p\le\infty$. We prove that the Bellman operator boundedly acts in $VMO(\mathbb T)$, and the Hardy operator maps a certain subspace $C(\mathbb T)$ into $VMO(\mathbb T)$. We also prove the invariance of certain classes of functions with given majorants of modules of continuity or best approximations in the spaces $H(\mathbb T)$, $L(\mathbb T)$, $VMO(\mathbb T)$ with respect to the Hardy and Bellman operators.
Keywords: Hardy transform, Bellman transform, BMO, VMO, majorant of modulus of continuity.
Received: 02.10.2007
English version:
Russian Mathematics (Izvestiya VUZ. Matematika), 2008, Volume 52, Issue 5, Pages 1–8
DOI: https://doi.org/10.3103/S1066369X08050010
Bibliographic databases:
UDC: 517.51
Language: Russian
Citation: S. S. Volosivets, B. I. Golubov, “Hardy and Bellman operators in spaces connected with $H(\mathbb T)$ and $BMO(\mathbb T)$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5, 4–13; Russian Math. (Iz. VUZ), 52:5 (2008), 1–8
Citation in format AMSBIB
\Bibitem{VolGol08}
\by S.~S.~Volosivets, B.~I.~Golubov
\paper Hardy and Bellman operators in spaces connected with $H(\mathbb T)$ and $BMO(\mathbb T)$
\jour Izv. Vyssh. Uchebn. Zaved. Mat.
\yr 2008
\issue 5
\pages 4--13
\mathnet{http://mi.mathnet.ru/ivm1273}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2445179}
\zmath{https://zbmath.org/?q=an:1157.42305}
\elib{https://elibrary.ru/item.asp?id=11034929}
\transl
\jour Russian Math. (Iz. VUZ)
\yr 2008
\vol 52
\issue 5
\pages 1--8
\crossref{https://doi.org/10.3103/S1066369X08050010}
Linking options:
  • https://www.mathnet.ru/eng/ivm1273
  • https://www.mathnet.ru/eng/ivm/y2008/i5/p4
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия высших учебных заведений. Математика Russian Mathematics (Izvestiya VUZ. Matematika)
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024