|
Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 2008, Number 5, Pages 4–13
(Mi ivm1273)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Hardy and Bellman operators in spaces connected with $H(\mathbb T)$ and $BMO(\mathbb T)$
S. S. Volosivetsa, B. I. Golubovb a Chair of Theory of Functions and Approximations, Faculty of Mathematics and Mechanics, Saratov State University
b Chair of Higher Mathematics, Moscow Physical Engineering Institute, Dolgoprudnyi, Moscow region, Russia
Abstract:
Assume that $1\leq p<\infty$ and the function $f\in L^p[0,\pi]$ has the Fourier series $\sum\limits^\infty_{n=1}a_n\cos nx$. According to Hardy, the series $\sum\limits^\infty_{n=1}n^{-1}\sum\limits^n_{k=1}a_k\cos nx$ is the Fourier series of a certain function $\mathcal H(f)\in L^p[0,\pi]$. But if $1< p\le \infty$ and $f\in L^p[0,\pi]$, then the series $\sum\limits^\infty_{n=1}\sum\limits^\infty_{k=n}k^{-1}a_k\cos nx$ is the Fourier series of a certain function $\mathcal B(f)\in L^p[0,\pi]$. Similar assertions are true for sine series. This allows one to define the Hardy operator $\mathcal H$ on $L^p(\mathbb T)$, $1\le p<\infty$, and to define the Bellman operator $\mathcal B$ on $L^p(\mathbb T)$, $1< p\le\infty$. We prove that the Bellman operator boundedly acts in $VMO(\mathbb T)$, and the Hardy operator maps a certain subspace $C(\mathbb T)$ into $VMO(\mathbb T)$. We also prove the invariance of certain classes of functions with given majorants of modules of continuity or best approximations in the spaces $H(\mathbb T)$, $L(\mathbb T)$, $VMO(\mathbb T)$ with respect to the Hardy and Bellman operators.
Keywords:
Hardy transform, Bellman transform, BMO, VMO, majorant of modulus of continuity.
Received: 02.10.2007
Citation:
S. S. Volosivets, B. I. Golubov, “Hardy and Bellman operators in spaces connected with $H(\mathbb T)$ and $BMO(\mathbb T)$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5, 4–13; Russian Math. (Iz. VUZ), 52:5 (2008), 1–8
Linking options:
https://www.mathnet.ru/eng/ivm1273 https://www.mathnet.ru/eng/ivm/y2008/i5/p4
|
|