|
Sibirskii Matematicheskii Zhurnal, 2009, Volume 50, Number 1, Pages 3–18
(Mi smj1932)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
Applications of $\mathbf P$-adic generalized functions and approximations by a system of $\mathbf P$-adic translations of a function
S. S. Volosivets Saratov State University named after N. G. Chernyshevsky, Faculty of Mathematics and Mechanics
Abstract:
Under some conditions we prove that the convergence of a sequence of functions in the space of $\mathbf P$-adic generalized functions is equivalent to its convergence in the space of locally integrable functions. Some analogs are established of the Wiener tauberian theorem and the Wiener theorem on denseness of translations for $\mathbf P$-adic convolutions and translations.
Keywords:
$\mathbf P$-adic generalized function, $L_\mathrm{loc}^p(\mathbb R_+)$, multiplicative Fourier transform, Lebesgue points of order $p$, Wiener tauberian theorem, Wiener theorem on denseness of translations.
Received: 31.08.2007
Citation:
S. S. Volosivets, “Applications of $\mathbf P$-adic generalized functions and approximations by a system of $\mathbf P$-adic translations of a function”, Sibirsk. Mat. Zh., 50:1 (2009), 3–18; Siberian Math. J., 50:1 (2009), 1–13
Linking options:
https://www.mathnet.ru/eng/smj1932 https://www.mathnet.ru/eng/smj/v50/i1/p3
|
|