Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2008, Volume 199, Issue 8, Pages 1111–1137
DOI: https://doi.org/10.1070/SM2008v199n08ABEH003956
(Mi sm3842)
 

This article is cited in 2 scientific papers (total in 2 papers)

Hardy and Bellman transformations of series with respect to multiplicative systems

S. S. Volosivets

Saratov State University named after N. G. Chernyshevsky
References:
Abstract: The well-known Hardy transformation by the method of arithmetic means of Fourier series with respect to multiplicative systems and the Bellman transformation dual to it are investigated. An integral representation of the Hardy operator is given; it is proved that spaces in a certain class that possess a majorant of the modulus of continuity in $L_p[0,1)$, $1\leq p\leq \infty$, $\mathrm{BMO}(\mathbf P,[0,1))$ or $H(\mathbf P,[0,1))$ are stable under the Hardy and Bellman transformations. Criteria for functions with generalized monotonic Fourier coefficients to belong to certain spaces are obtained; these are given in terms of their Fourier coefficients and their Hardy and Bellman transformations.
Bibliography: 30 titles.
Received: 20.02.2007 and 19.11.2007
Bibliographic databases:
UDC: 517.518.3
MSC: 47B38, 42A16
Language: English
Original paper language: Russian
Citation: S. S. Volosivets, “Hardy and Bellman transformations of series with respect to multiplicative systems”, Sb. Math., 199:8 (2008), 1111–1137
Citation in format AMSBIB
\Bibitem{Vol08}
\by S.~S.~Volosivets
\paper Hardy and Bellman transformations of series with respect to multiplicative systems
\jour Sb. Math.
\yr 2008
\vol 199
\issue 8
\pages 1111--1137
\mathnet{http://mi.mathnet.ru//eng/sm3842}
\crossref{https://doi.org/10.1070/SM2008v199n08ABEH003956}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2452265}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000260697900009}
\elib{https://elibrary.ru/item.asp?id=20359347}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-57049188933}
Linking options:
  • https://www.mathnet.ru/eng/sm3842
  • https://doi.org/10.1070/SM2008v199n08ABEH003956
  • https://www.mathnet.ru/eng/sm/v199/i8/p3
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:586
    Russian version PDF:227
    English version PDF:21
    References:78
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024