Abstract:
In this paper the best polynomial approximation in terms of the system of Faber–Schauder functions in the space $C_p[0,1]$ is studied. The constant in the estimate of Jackson's inequality for the best approximation in the metric of $C_p[0,1]$ and the estimate of the modulus of continuity $\omega_{1-1/p}$ are refined.
Citation:
S. S. Volosivets, “Approximation of functions of bounded $p$-variation by polynomials in terms of the Faber–Schauder system”, Mat. Zametki, 62:3 (1997), 363–371; Math. Notes, 62:3 (1997), 306–313
\Bibitem{Vol97}
\by S.~S.~Volosivets
\paper Approximation of functions of bounded $p$-variation by polynomials in terms of the Faber--Schauder system
\jour Mat. Zametki
\yr 1997
\vol 62
\issue 3
\pages 363--371
\mathnet{http://mi.mathnet.ru/mzm1618}
\crossref{https://doi.org/10.4213/mzm1618}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1620058}
\zmath{https://zbmath.org/?q=an:0923.41009}
\transl
\jour Math. Notes
\yr 1997
\vol 62
\issue 3
\pages 306--313
\crossref{https://doi.org/10.1007/BF02360871}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000072500900005}
Linking options:
https://www.mathnet.ru/eng/mzm1618
https://doi.org/10.4213/mzm1618
https://www.mathnet.ru/eng/mzm/v62/i3/p363
This publication is cited in the following 1 articles:
Nikolaj Mormul`, Alexander Shchitov, “A study of approximation of functions of bounded variation by Faber-Schauder partial sums”, EEJET, 4:4 (100) (2019), 14