Loading [MathJax]/jax/output/SVG/config.js
Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2017, Volume 208, Issue 1, Pages 44–59
DOI: https://doi.org/10.1070/SM8636
(Mi sm8636)
 

This article is cited in 21 scientific papers (total in 21 papers)

Approximation of functions and their conjugates in variable Lebesgue spaces

S. S. Volosivets

Saratov State University
References:
Abstract: One-sided Steklov means are used to introduce moduli of continuity of natural order in variable $L^{p(\cdot)}_{2\pi}$-spaces. A direct theorem of Jackson-Stechkin type and an inverse theorem of Salem-Stechkin type are given. Similar results are obtained for the conjugate functions.
Bibliography: 24 titles.
Keywords: variable Lebesgue space, variable Sobolev space, $K$-functional, generalized modulus of continuity, direct and inverse approximation theorems, conjugate function.
Received: 18.11.2015 and 19.04.2016
Bibliographic databases:
Document Type: Article
UDC: 517.518.832
MSC: Primary 41A10, 41A17; Secondary 26A15, 26A16
Language: English
Original paper language: Russian
Citation: S. S. Volosivets, “Approximation of functions and their conjugates in variable Lebesgue spaces”, Sb. Math., 208:1 (2017), 44–59
Citation in format AMSBIB
\Bibitem{Vol17}
\by S.~S.~Volosivets
\paper Approximation of functions and their conjugates in variable Lebesgue spaces
\jour Sb. Math.
\yr 2017
\vol 208
\issue 1
\pages 44--59
\mathnet{http://mi.mathnet.ru/eng/sm8636}
\crossref{https://doi.org/10.1070/SM8636}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3598764}
\zmath{https://zbmath.org/?q=an:1371.41009}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017SbMat.208...44V}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000397338200002}
\elib{https://elibrary.ru/item.asp?id=28172153}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85016558719}
Linking options:
  • https://www.mathnet.ru/eng/sm8636
  • https://doi.org/10.1070/SM8636
  • https://www.mathnet.ru/eng/sm/v208/i1/p48
  • This publication is cited in the following 21 articles:
    1. S. Jafarov, “Approximation by Nörlund type means in the grand Lebesgue spaces with variable exponent”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 34:1 (2024), 19–32  mathnet  crossref
    2. Ahmet Testici, Daniyal M. Israfilov, “Approximation by trigonometric polynomials in weighted Morrey spaces”, Mosc. Math. J., 24:1 (2024), 91–105  mathnet
    3. S. S. Volosivets, “Riesz–Zygmund Means and Approximation in Variable Exponent Grand Spaces”, Results Math, 79:5 (2024)  crossref
    4. S. Volosivets, “Approximation in Variable Exponent Spaces and Growth of Norms of Trigonometric Polynomials”, Anal Math, 49:1 (2023), 307  crossref  mathscinet
    5. Sadulla Jafarov, “On approximation properties of functions by means of Fourier and Faber series in weighted Lebesgue spaces with variable exponent”, Mathematica Moravica, 27:1 (2023), 97  crossref  mathscinet
    6. O. L. Vinogradov, “Direct and inverse theorems of approximation theory in Banach function spaces”, St. Petersburg Math. J., 35:6 (2024), 907–928  mathnet  crossref
    7. S. S. Volosivets, “Approximation by linear means of Fourier series and realization functionals in weighted Orlicz spaces”, Probl. anal. Issues Anal., 11(29):2 (2022), 106–118  mathnet  crossref  mathscinet
    8. D. M. Israfilzade, E. Gursel, “Convolutions and approximations in the variable exponent spaces”, BAUN Fen. Bil. Enst. Dergisi., 24:2 (2022), 636–644  crossref
    9. R. Akgun, “Approximation properties of Bernstein singular integrals in variable exponent Lebesgue spaces on the real axis”, Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat., 71:4 (2022), 1058–1079  crossref  mathscinet
    10. R. Akgun, “Exponential approximation in variable exponent Lebesgue spaces on the real line”, Constructive Mathematical Analysis, 5:4 (2022), 214–237  crossref  mathscinet
    11. S. S. Volosivets, “Realization functionals and description of a modulus of smoothness in variable exponent Lebesgue spaces”, Russian Math. (Iz. VUZ), 66:6 (2022), 8–19  mathnet  crossref  crossref
    12. D. M. Israfilov, E. Gursel, “Approximation by $p(\cdot)$-Faber polynomials in the variable Smirnov classes”, Math. Meth. Appl. Sci., 44:9 (2021), 7479–7490  crossref  mathscinet  isi  scopus
    13. A. Testici, D. M. Israfilov, “Approximation by matrix transforms in generalized grand Lebesgue spaces with variable exponent”, Appl. Anal., 100:4 (2021), 819–834  crossref  mathscinet  zmath  isi  scopus
    14. S. S. Volosivets, “Modified modulus of smoothness and approximation in weighted Lorentz spaces by Borel and Euler means”, Probl. anal. Issues Anal., 10(28):1 (2021), 87–100  mathnet  crossref  elib
    15. A. Testici, D. M. Israfilov, “Linear methods of approximation in weighted Lebesgue spaces with variable exponent”, Hacet. J. Math. Stat., 50:3 (2021), 744–753  crossref  mathscinet  isi
    16. A. Testici, “Approximation theorems in weighted Lebesgue spaces with variable exponent”, Filomat, 35:2 (2021), 561–577  crossref  mathscinet  isi
    17. D. M. Israfilov, E. Gursel, “Direct and inverse theorems in variable exponent Smirnov classes”, Proc. Inst. Math. Mech., 47:1 (2021), 55–66  mathscinet  isi
    18. R. Akgun, “Direct theorems of trigonometric approximation for variable exponent Lebesgue spaces”, Rev. Un. Mat. Argentina, 60:1 (2019), 121–135  crossref  mathscinet  zmath  isi  scopus
    19. Sadulla Jafarov, “Approximation by Zygmund means in variable exponent Lebesque spaces”, Mathematica Moravica, 23:1 (2019), 27  crossref  mathscinet
    20. D. M. Israfilov, A. Testici, “Simultaneous approximation in Lebesgue space with variable exponent”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 44:1 (2018), 3–18  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:737
    Russian version PDF:93
    English version PDF:15
    References:84
    First page:63
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025