Abstract:
We study the relationship between the weighted integrability of a function and that of its multiplicative Fourier transform (MFT). In particular, for the MFT we prove an analog of R. Boas' conjecture related to the Fourier sine and cosine transforms. In addition, we obtain a sufficient condition under which a contraction of an MFT is also an MFT. For the moduli of continuity ω satisfying N. K. Bari's condition, we present a criterion for determining whether a function with a nonnegative MFT belongs to the class Hω.
Citation:
S. S. Volosivets, B. I. Golubov, “Weighted integrability of multiplicative Fourier transforms”, Function theory and differential equations, Collected papers. Dedicated to Academician Sergei Mikhailovich Nikol'skii on the occasion of his 105th birthday, Trudy Mat. Inst. Steklova, 269, MAIK Nauka/Interperiodica, Moscow, 2010, 71–81; Proc. Steklov Inst. Math., 269 (2010), 65–75
\Bibitem{VolGol10}
\by S.~S.~Volosivets, B.~I.~Golubov
\paper Weighted integrability of multiplicative Fourier transforms
\inbook Function theory and differential equations
\bookinfo Collected papers. Dedicated to Academician Sergei Mikhailovich Nikol'skii on the occasion of his 105th birthday
\serial Trudy Mat. Inst. Steklova
\yr 2010
\vol 269
\pages 71--81
\publ MAIK Nauka/Interperiodica
\publaddr Moscow
\mathnet{http://mi.mathnet.ru/tm2899}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2729974}
\zmath{https://zbmath.org/?q=an:1210.42013}
\elib{https://elibrary.ru/item.asp?id=15109752}
\transl
\jour Proc. Steklov Inst. Math.
\yr 2010
\vol 269
\pages 65--75
\crossref{https://doi.org/10.1134/S0081543810020069}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000281705900006}
\elib{https://elibrary.ru/item.asp?id=15325671}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77956622872}
Linking options:
https://www.mathnet.ru/eng/tm2899
https://www.mathnet.ru/eng/tm/v269/p71
This publication is cited in the following 3 articles:
Golubov B.I., Volosivets S.S., “Integrability and Uniform Convergence of Multiplicative Transforms”, New Trends in Analysis and Interdisciplinary Applications, Trends in Mathematics, eds. Dang P., Ku M., Qian T., Rodino L., Birkhauser Boston, 2017, 363–369
Mukanov A., “Boas' Conjecture in Anisotropic Lebesgue and Lorentz Spaces”, Acta Sci. Math., 83:1-2 (2017), 201–214
S. S. Volosivets, B. I. Golubov, “Uniform Convergence and Integrability of Multiplicative Fourier Transforms”, Math. Notes, 98:1 (2015), 53–67