Citation:
S. S. Volosivets, “Approximation of functions of bounded $p$-variation by means of polynomials of the Haar and Walsh systems”, Mat. Zametki, 53:6 (1993), 11–21; Math. Notes, 53:6 (1993), 569–575
\Bibitem{Vol93}
\by S.~S.~Volosivets
\paper Approximation of functions of bounded $p$-variation by means of polynomials of the Haar and Walsh systems
\jour Mat. Zametki
\yr 1993
\vol 53
\issue 6
\pages 11--21
\mathnet{http://mi.mathnet.ru/mzm2353}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1325175}
\zmath{https://zbmath.org/?q=an:0797.42016}
\elib{https://elibrary.ru/item.asp?id=12737720}
\transl
\jour Math. Notes
\yr 1993
\vol 53
\issue 6
\pages 569--575
\crossref{https://doi.org/10.1007/BF01212591}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1993MY10800020}
Linking options:
https://www.mathnet.ru/eng/mzm2353
https://www.mathnet.ru/eng/mzm/v53/i6/p11
This publication is cited in the following 6 articles:
Nikolaj Mormul`, Alexander Shchitov, “A study of approximation of functions of bounded variation by Faber-Schauder partial sums”, EEJET, 4:4 (100) (2019), 14
Alexander N. Shchitov, “The Exact Estimates of Fourier-Haar Coefficients of Functions of Bounded Variation”, IJARM, 4 (2016), 14
Alexander N. Shchitov, “Best One-Sided Approximation of Some Classes of Functions of Several Variables by Haar Polynomials”, IJARM, 6 (2016), 42
Alexander N. Shchitov, “On Approximation of the Continuous Functions of Two Variables by the Fourier-Haar "Angle"”, IJARM, 5 (2016), 23
Boris Golubov, Sergey Volosivets, “Absolute Convergence of the Series of Fourier-Haar Coefficients”, STSIP, 13:2 (2014), 125
S. S. Volosivets, “Approximation of functions of bounded $p$-variation by polynomials in terms of the Faber–Schauder system”, Math. Notes, 62:3 (1997), 306–313