01.01.01 (Real analysis, complex analysis, and functional analysis)
Birth date:
23.07.1939
E-mail:
Keywords:
Fourier series,
Fourier transforms,
Walsh series,
Hardy operator,
Bellman operator,
Hardy–Littlewood operator,
dyadic integral,
dyadic derivative,
approximation by the convolutions,
bases of shifts of a function,
functions of bounded generalized variation.
Subject:
The Gibbs phenomenon for Riesz spherical means of multiple Fourier series was discovered and the Gibbs constants for these means from below were estimated. The necessary and sufficient conditions for convergence in Pringsheim sense of multiple Fourier series of functions of bounded $\Phi$-variation of Hardy type were obtained. The boundedness of the Hardy operator in real Hardy spaces $H(R)$ and $H(T)$ was proved. The similar result for dyadic Hardy operator was also obtained. The analogue of tauberian theorem of Wiener in dyadic harmonic analysis was proved. As a corollary the following two criteria were obtained: 1) the linear hull of the set $\{f(\cdot\oplus y):y\ge0\}$ of dyadic shifts of a given function $f\in L(\mathbb{R}_+)$ is dens in the space $L(\mathbb{R}_+)$ iff the Walsh–Fourier transform $\tilde f(x)$ is not equal to zero on positive half-line $\mathbb{R}_+$ (dyadic analogue of the criterion of Wiener); 2) in order the linear hull of the set $\{f(\cdot\oplus y):0\le y<1\}$ of all dyadic shifts of the given function $f\in L[0,1)$ be dens in the space $L[0,1)$, it is necessary and sufficient that all Walsh–Fourier coefficients of the function $f\in L[0,1)$ are not equal to zero.
Biography
Graduated from Faculty of Mathematics and Mechanics of M. V. Lomonosov Moscow State University (MSU) in 1961 (department of theory of functions and functional analysis). Ph.D. thesis was defended in 1964. D.Sci. thesis was defended in 1975. A list of my works contains more than 80 titles. I am the member of Organizing Committees of Saratov Winter Schools on Function Theory (since 1988), Voronezh Winter Schools on Function Theory (since 1993) and Kazan Summer Schools on Function Theory (since 1995).
Main publications:
B. I. Golubov, A. V. Efimov, V. A. Skvortsov. Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya. M.: Nauka, 1987. (B. Golubov, A. Efimov, V. Skvortsov. Walsh series and transforms. Theory and applications. Kluver Academic Publishers, Dordrecht, Boston, London, 1991).
B. I. Golubov. Elementy dvoichnogo analiza. M.: MGUP, 2005.
B. I. Golubov. Ogranichennost operatorov Khardi i Khardi–Littlvuda v prostranstvakh Re H i BMO // Matem. sb., t. 188, # 7 (1997), 93–106.
B. I. Golubov. Ob analoge neravenstva Khardi dlya preobrazovaniya Fure–Uolsha // Izv. RAN. Ser. matem., t. 65, # 3 (2001), 3–14.
B. I. Golubov. Dvoichnyi analog tauberovoi teoremy Vinera i smezhnye voprosy // Izv. RAN. Ser. matem., t. 67, # 1, (2003), 33–58.
B. I. Golubov. O modifitsirovannom silnom dvoichnom integrale i proizvodnoi // Matem. sb., t. 193, # 4 (2002), 37–60.
S. S. Volosivets, B. I. Golubov, “Weighted Integrability of Multiple Multiplicative Fourier Transforms”, Mat. Zametki, 111:3 (2022), 365–374; Math. Notes, 111:3 (2022), 364–372
B. I. Golubov, S. S. Volosivets, “Fourier Transforms of Convolutions of Functions in Lebesgue and Lorentz Spaces”, Trudy Mat. Inst. Steklova, 319 (2022), 94–105; Proc. Steklov Inst. Math., 319 (2022), 85–96
2021
3.
B. I. Golubov, S. S. Volosivets, “Fourier transform and continuity of functions of bounded $\Phi$-variation”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 199 (2021), 43–49
2019
4.
S. S. Volosivets, B. I. Golubov, “Modified Hardy and Hardy–Littlewood fractional operators in Morrey–Herz spaces and their commutators in weighted spaces”, Itogi Nauki i Tekhniki. Sovrem. Mat. Pril. Temat. Obz., 171 (2019), 70–77
S. S. Volosivets, B. I. Golubov, “Fractional modified Hardy and Hardy–Littlewood operators and their commutators”, Izv. Vyssh. Uchebn. Zaved. Mat., 2019, no. 9, 16–26; Russian Math. (Iz. VUZ), 63:9 (2019), 12–21
S. S. Volosivets, B. I. Golubov, “Generalized absolute convergence of series from Fourier coeficients by systems of Haar type”, Izv. Vyssh. Uchebn. Zaved. Mat., 2018, no. 1, 10–20; Russian Math. (Iz. VUZ), 62:1 (2018), 7–16
S. S. Volosivets, B. I. Golubov, “Uniform Convergence and Integrability of Multiplicative Fourier Transforms”, Mat. Zametki, 98:1 (2015), 44–60; Math. Notes, 98:1 (2015), 53–67
S. S. Volosivets, B. I. Golubov, “Fourier transforms in generalized Lipschitz classes”, Trudy Mat. Inst. Steklova, 280 (2013), 126–137; Proc. Steklov Inst. Math., 280 (2013), 120–131
B. I. Golubov, “Absolute convergence of double series of Fourier–Haar coefficients for functions of bounded $p$-variation”, Izv. Vyssh. Uchebn. Zaved. Mat., 2012, no. 6, 3–13; Russian Math. (Iz. VUZ), 56:6 (2012), 1–10
B. I. Golubov, “Spherical Jump of a Function and the Bochner–Riesz Means of Conjugate Multiple Fourier Series and Fourier Integrals”, Mat. Zametki, 91:4 (2012), 506–514; Math. Notes, 91:4 (2012), 479–486
S. S. Volosivets, B. I. Golubov, “Weighted integrability of multiplicative Fourier transforms”, Trudy Mat. Inst. Steklova, 269 (2010), 71–81; Proc. Steklov Inst. Math., 269 (2010), 65–75
S. S. Volosivets, B. I. Golubov, “Hardy and Bellman operators in spaces connected with $H(\mathbb T)$ and $BMO(\mathbb T)$”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5, 4–13; Russian Math. (Iz. VUZ), 52:5 (2008), 1–8
B. I. Golubov, “Modified Dyadic Integral and Fractional Derivative on $\mathbb R_+$”, Mat. Zametki, 79:2 (2006), 213–233; Math. Notes, 79:2 (2006), 196–214
B. I. Golubov, “Fractional Modified Dyadic Integral and Derivative on $\mathbb{R}_+$”, Funktsional. Anal. i Prilozhen., 39:2 (2005), 64–70; Funct. Anal. Appl., 39:2 (2005), 64–70
B. I. Golubov, “A dyadic analogue of Wiener's Tauberian theorem and some related questions”, Izv. RAN. Ser. Mat., 67:1 (2003), 33–58; Izv. Math., 67:1 (2003), 29–53
B. I. Golubov, “An analogue of a theorem of Titchmarsh for Walsh-Fourier transformations”, Mat. Sb., 189:5 (1998), 69–86; Sb. Math., 189:5 (1998), 707–725
B. I. Golubov, “Boundedness of the Hardy and the Hardy–Littlewood operators in the spaces $\operatorname {Re}H^1$ and $\mathrm {BMO}$”, Mat. Sb., 188:7 (1997), 93–106; Sb. Math., 188:7 (1997), 1041–1054
B. I. Golubov, “A generalized symmetric derivative and the summability of multiple trigonometric series by the Lebesgue method”, Sibirsk. Mat. Zh., 22:6 (1981), 15–21; Siberian Math. J., 22:6 (1981), 815–820
1980
28.
B. I. Golubov, “On the rate of convergence of integrals of Gauss–Weierstrass type for functions of several variables”, Izv. Akad. Nauk SSSR Ser. Mat., 44:6 (1980), 1255–1278; Math. USSR-Izv., 17:3 (1981), 455–475
B. I. Golubov, “On convergence of singular integrals of Gauss–Weierstrass type for functions of several variables”, Dokl. Akad. Nauk SSSR, 248:5 (1979), 1044–1048
B. I. Golubov, “On the summability method of Abel–Poisson type for multiple Fourier integrals”, Mat. Sb. (N.S.), 108(150):2 (1979), 229–246; Math. USSR-Sb., 36:2 (1980), 213–229
B. I. Golubov, “On the summability of Fourier integrals by Riesz spherical means”, Mat. Sb. (N.S.), 104(146):4(12) (1977), 577–596; Math. USSR-Sb., 33:4 (1977), 501–518
B. I. Golubov, “Approximation of functions of several variables by spherical Riesz means”, Mat. Zametki, 17:2 (1975), 181–191; Math. Notes, 17:2 (1975), 108–113
35.
B. I. Golubov, “On convergence of Riesz spherical means of multiple Fourier series”, Mat. Sb. (N.S.), 96(138):2 (1975), 189–211; Math. USSR-Sb., 25:2 (1975), 177–197
B. I. Golubov, “The approximation of a Hölder class of two variables by Riesz spherical means”, Mat. Zametki, 15:1 (1974), 33–43; Math. Notes, 15:1 (1974), 20–25
38.
B. I. Golubov, “The convergence of the double Fourier series of functions of bounded generalized variation. II”, Sibirsk. Mat. Zh., 15:4 (1974), 767–783; Siberian Math. J., 15:4 (1974), 546–557
B. I. Golubov, “The convergence of the double Fourier series of functions of bounded generalized variation. I”, Sibirsk. Mat. Zh., 15:2 (1974), 262–291; Siberian Math. J., 15:2 (1974), 183–204
B. I. Golubov, “The asymptotic $L_p$-norm of differentiated Fourier sums of functions of bounded variation”, Izv. Akad. Nauk SSSR Ser. Mat., 37:2 (1973), 399–421; Math. USSR-Izv., 7:2 (1973), 401–423
B. I. Golubov, “Functions of generalized bounded variation, convergence of their Fourier series and conjugate trigonometric series”, Dokl. Akad. Nauk SSSR, 205:6 (1972), 1277–1280
B. I. Golubov, “Determination of the jump of a function of bounded $p$-variation by its Fourier series”, Mat. Zametki, 12:1 (1972), 19–28; Math. Notes, 12:1 (1972), 444–449
B. I. Golubov, “Asymptotic behavior of the $L_p$-norms of differentiated Fourier sums of functions of bounded variation”, Uspekhi Mat. Nauk, 27:6(168) (1972), 235–236
B. I. Golubov, “On the convergence of Riesz spherical means of multiple Fourier series and integrals of functions of bounded generalized variation”, Mat. Sb. (N.S.), 89(131):4(12) (1972), 630–653; Math. USSR-Sb., 18:4 (1972), 635–658
B. I. Golubov, “Best approximations of functions in the $L_p$ metric by Haar and Walsh polynomials”, Mat. Sb. (N.S.), 87(129):2 (1972), 254–274; Math. USSR-Sb., 16:2 (1972), 265–285
B. I. Golubov, “Tests of the continuity of functions of bounded $p$-variation”, Sibirsk. Mat. Zh., 13:5 (1972), 1002–1015; Siberian Math. J., 13:5 (1972), 693–702
B. I. Golubov, “On the summability of sequences”, Izv. Vyssh. Uchebn. Zaved. Mat., 1964, no. 4, 47–55
2018
61.
B. I. Golubov, B. S. Kashin, L. Yu. Kossovich, S. P. Sidorov, A. P. Khromov, A. N. Chumachenko, “19th International Saratov Winter School “Contemporary problems of function theory and their applications"”, Izv. Saratov Univ. Math. Mech. Inform., 18:3 (2018), 354–365
2016
62.
B. I. Golubov, B. S. Kashin, L. Yu. Kossovich, S. P. Sidorov, A. P. Khromov, A. N. Chumachenko, “18th International Saratov Winter School “Contemporary Problems of Function Theory and Their Applications””, Izv. Saratov Univ. Math. Mech. Inform., 16:4 (2016), 485–487
63.
M. V. Balashov, O. V. Besov, B. I. Golubov, V. V. Goryainov, V. N. Diesperov, S. I. Dudov, G. E. Ivanov, S. P. Konovalov, R. V. Konstantinov, A. B. Kurzhanskii, S. R. Nasyrov, A. G. Sergeev, V. V. Starkov, V. M. Tikhomirov, M. I. Shabunin, “Evgenii Sergeevich Polovinkin (on his 70th birthday)”, Uspekhi Mat. Nauk, 71:5(431) (2016), 187–190; Russian Math. Surveys, 71:5 (2016), 983–987
64.
B. I. Golubov, B. S. Kashin, T. P. Lukashenko, M. G. Plotnikov, M. A. Skopina, A. P. Solodov, A. M. Stepin, N. N. Kholshchevnikova, “Valentin Anatol'evich Skvortsov (on his 80th birthday)”, Uspekhi Mat. Nauk, 71:1(427) (2016), 184–186; Russian Math. Surveys, 71:1 (2016), 175–177
2015
65.
B. I. Golubov, B. S. Kashin, L. Yu. Kossovich, S. P. Sidorov, A. P. Khromov, “XVII International Saratov Winter School «Contemporary Problems of the Function Theory and its Applications». Dedicated to the 150th Anniversary of V. A. Steklov”, Izv. Saratov Univ. Math. Mech. Inform., 15:3 (2015), 357–359
B. I. Golubov, B. S. Kashin, L. Yu. Kossovich, S. P. Sidorov, A. P. Khromov, “16 Saratov winter school “Contemporary problems of function theory and its applications””, Izv. Saratov Univ. Math. Mech. Inform., 12:2 (2012), 114–115
2011
67.
O. V. Besov, S. V. Bochkarev, B. I. Golubov, A. A. Gonchar, M. I. D'yachenko, V. V. Kozlov, S. V. Konyagin, Yu. V. Malykhin, S. M. Nikol'skii, M. K. Potapov, V. A. Sadovnichii, S. A. Telyakovskii, “Boris Sergeevich Kashin (on his 60th birthday)”, Uspekhi Mat. Nauk, 66:4(400) (2011), 189–191; Russian Math. Surveys, 66:4 (2011), 825–828
2008
68.
B. I. Golubov, B. S. Kashin, “Introduction”, Izv. Vyssh. Uchebn. Zaved. Mat., 2008, no. 5, 3
69.
B. I. Golubov, A. A. Gonchar, B. S. Kashin, S. M. Nikol'skii, A. M. Olevskii, M. K. Potapov, “On the 80th birthday of Petr Lavrent'evich Ul'yanov”, Uspekhi Mat. Nauk, 63:5(383) (2008), 203–207; Russian Math. Surveys, 63:5 (2008), 989–994
2006
70.
B. I. Golubov, S. M. Nikol'skii, S. A. Telyakovskii, P. L. Ul'yanov, “Károly Tandori (obituary)”, Uspekhi Mat. Nauk, 61:1(367) (2006), 165–168; Russian Math. Surveys, 61:1 (2006), 161–164