Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2003, Volume 67, Issue 1, Pages 29–53
DOI: https://doi.org/10.1070/IM2003v067n01ABEH000417
(Mi im417)
 

This article is cited in 7 scientific papers (total in 7 papers)

A dyadic analogue of Wiener's Tauberian theorem and some related questions

B. I. Golubov

Moscow Engineering Physics Institute (State University)
References:
Abstract: A dyadic analogue is proved of Wiener's Tauberian convolution theorem for two functions. Closedness criteria are established for the linear span of the set of binary shifts $\{f(\,\circ\oplus y)\colon y\geqslant 0\}$ for a given function $f\in L(\mathbb R_+)$ or $f\in L^2(\mathbb R_+)$. A consequence of these criteria is that the linear span of the set of binary shifts $\{f(\,\circ\oplus y)\colon 0\leqslant y\leqslant 1\}$ for a given function $f\in L([0,1))$ ($f\in L^2([0,1))$) is dense in the space $L([0,1))$ ($L^2([0,1))$) if and only if all the Fourier coefficients of $f$ with respect to the orthonormalized Walsh system on $[0,1)$ are non-zero.
Received: 15.03.2002
Bibliographic databases:
UDC: 517.5
Language: English
Original paper language: Russian
Citation: B. I. Golubov, “A dyadic analogue of Wiener's Tauberian theorem and some related questions”, Izv. Math., 67:1 (2003), 29–53
Citation in format AMSBIB
\Bibitem{Gol03}
\by B.~I.~Golubov
\paper A~dyadic analogue of Wiener's Tauberian theorem and some related questions
\jour Izv. Math.
\yr 2003
\vol 67
\issue 1
\pages 29--53
\mathnet{http://mi.mathnet.ru//eng/im417}
\crossref{https://doi.org/10.1070/IM2003v067n01ABEH000417}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1957915}
\zmath{https://zbmath.org/?q=an:1067.42016}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185513200003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33748513297}
Linking options:
  • https://www.mathnet.ru/eng/im417
  • https://doi.org/10.1070/IM2003v067n01ABEH000417
  • https://www.mathnet.ru/eng/im/v67/i1/p33
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:824
    Russian version PDF:230
    English version PDF:9
    References:61
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024