Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 1998, Volume 189, Issue 5, Pages 707–725
DOI: https://doi.org/10.1070/sm1998v189n05ABEH000322
(Mi sm322)
 

This article is cited in 2 scientific papers (total in 2 papers)

An analogue of a theorem of Titchmarsh for Walsh-Fourier transformations

B. I. Golubov

Moscow Engineering Physics Institute (State University)
References:
Abstract: Let $\hat f_c$ be the Fourier cosine transform of $f$. Then, as proved for functions of class $L^p(\mathbb R_+)$ in Titchmarsh's book 'Introduction to the theory of Fourier integrals' (1937),
$$ \mathscr H(\hat f_c)=\widehat {\mathscr B(f)}_c, \qquad \mathscr B(\hat f_c)=\widehat {\mathscr H(f)}_c, $$
for the Hardy operator
$$ \mathscr H(f)(x)=\int _x^{+\infty }\frac {f(y)}y\,dy, \qquad x>0, $$
and the Hardy-Littlewood operator
$$ \mathscr B(f)(x)=\frac 1x\int _0^xf(y)\,dy, \qquad x>0. $$
In the present paper similar equalities are proved for functions of class $L^p(\mathbb R_+)$, $1<p\leqslant 2$, and the Walsh-Fourier transformation.
Received: 28.07.1997
Russian version:
Matematicheskii Sbornik, 1998, Volume 189, Number 5, Pages 69–86
DOI: https://doi.org/10.4213/sm322
Bibliographic databases:
UDC: 517.518.2
MSC: 47B38, 47G10
Language: English
Original paper language: Russian
Citation: B. I. Golubov, “An analogue of a theorem of Titchmarsh for Walsh-Fourier transformations”, Mat. Sb., 189:5 (1998), 69–86; Sb. Math., 189:5 (1998), 707–725
Citation in format AMSBIB
\Bibitem{Gol98}
\by B.~I.~Golubov
\paper An analogue of a theorem of Titchmarsh for Walsh-Fourier transformations
\jour Mat. Sb.
\yr 1998
\vol 189
\issue 5
\pages 69--86
\mathnet{http://mi.mathnet.ru/sm322}
\crossref{https://doi.org/10.4213/sm322}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1639177}
\zmath{https://zbmath.org/?q=an:0918.42018}
\transl
\jour Sb. Math.
\yr 1998
\vol 189
\issue 5
\pages 707--725
\crossref{https://doi.org/10.1070/sm1998v189n05ABEH000322}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000075975300004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0032220822}
Linking options:
  • https://www.mathnet.ru/eng/sm322
  • https://doi.org/10.1070/sm1998v189n05ABEH000322
  • https://www.mathnet.ru/eng/sm/v189/i5/p69
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:509
    Russian version PDF:220
    English version PDF:12
    References:85
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024