Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 2001, Volume 65, Issue 3, Pages 425–435
DOI: https://doi.org/10.1070/IM2001v065n03ABEH000333
(Mi im333)
 

This article is cited in 12 scientific papers (total in 12 papers)

On an analogue of Hardy's inequality for the Walsh–Fourier

B. I. Golubov

Moscow Engineering Physics Institute (State University)
References:
Abstract: According to Hardy's well-known inequality, the $l_1$-norm of a function in the Hardy space $H(T)$ consisting of $2\pi$-periodic functions serves as an upper estimate for the $l_1$-norm of the sequence of Fourier coefficients of the integral of the function. In this paper, the dyadic Hardy space $H(\mathbb R_+)$ is introduced and an analogue of this estimate is proved for the Walsh–Fourier transform.
Received: 17.05.2000
Bibliographic databases:
Language: English
Original paper language: Russian
Citation: B. I. Golubov, “On an analogue of Hardy's inequality for the Walsh–Fourier”, Izv. Math., 65:3 (2001), 425–435
Citation in format AMSBIB
\Bibitem{Gol01}
\by B.~I.~Golubov
\paper On an analogue of Hardy's inequality for the Walsh--Fourier
\jour Izv. Math.
\yr 2001
\vol 65
\issue 3
\pages 425--435
\mathnet{http://mi.mathnet.ru//eng/im333}
\crossref{https://doi.org/10.1070/IM2001v065n03ABEH000333}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1853363}
\zmath{https://zbmath.org/?q=an:0992.42015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746856406}
Linking options:
  • https://www.mathnet.ru/eng/im333
  • https://doi.org/10.1070/IM2001v065n03ABEH000333
  • https://www.mathnet.ru/eng/im/v65/i3/p3
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024