Sbornik: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Sb.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Sbornik: Mathematics, 2002, Volume 193, Issue 4, Pages 507–529
DOI: https://doi.org/10.1070/SM2002v193n04ABEH000643
(Mi sm643)
 

This article is cited in 19 scientific papers (total in 19 papers)

A modified strong dyadic integral and derivative

B. I. Golubov

Moscow Engineering Physics Institute (State University)
References:
Abstract: For a function $f\in L(\mathbb R_+)$ its modified strong dyadic integral $J(f)$ and the modified strong dyadic derivative $D(f)$ are defined. A criterion for the existence of a modified strong dyadic integral for an integrable function is proved, and the equalities $J(D(f))=f$ and $D(J(f))=f$ are established under the assumption that $\displaystyle\int_{\mathbb R_+}f(x)\,dx=0$. A countable system of eigenfunctions of the operators $D$ and $J$ is found. The linear span $L$ of this set is shown to be dense in the dyadic Hardy space $H(\mathbb R_+)$, and the linear operator $\widetilde J\colon L\to L(\mathbb R_+)$, $\widetilde J(f)=J(f)^\sim$, is proved to be bounded. Hence this operator can be uniquely continuously extended to $H(\mathbb R_+)$ and the resulting linear operator $\widetilde J\colon H(\mathbb R_+)\to L(\mathbb R_+)$ is bounded.
Received: 10.09.2001
Russian version:
Matematicheskii Sbornik, 2002, Volume 193, Number 4, Pages 37–60
DOI: https://doi.org/10.4213/sm643
Bibliographic databases:
UDC: 517.5
MSC: 42C10, 26A24
Language: English
Original paper language: Russian
Citation: B. I. Golubov, “A modified strong dyadic integral and derivative”, Sb. Math., 193:4 (2002), 507–529
Citation in format AMSBIB
\Bibitem{Gol02}
\by B.~I.~Golubov
\paper A modified strong dyadic integral and derivative
\jour Sb. Math.
\yr 2002
\vol 193
\issue 4
\pages 507--529
\mathnet{http://mi.mathnet.ru//eng/sm643}
\crossref{https://doi.org/10.1070/SM2002v193n04ABEH000643}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1918887}
\zmath{https://zbmath.org/?q=an:1030.42023}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000177130300012}
\elib{https://elibrary.ru/item.asp?id=13393671}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-0036054855}
Linking options:
  • https://www.mathnet.ru/eng/sm643
  • https://doi.org/10.1070/SM2002v193n04ABEH000643
  • https://www.mathnet.ru/eng/sm/v193/i4/p37
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математический сборник - 1992–2005 Sbornik: Mathematics
    Statistics & downloads:
    Abstract page:445
    Russian version PDF:220
    English version PDF:38
    References:54
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024