Loading [MathJax]/jax/output/CommonHTML/jax.js
Matematicheskie Zametki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Zametki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskie Zametki, 2012, Volume 91, Issue 4, Pages 506–514
DOI: https://doi.org/10.4213/mzm8739
(Mi mzm8739)
 

This article is cited in 10 scientific papers (total in 10 papers)

Spherical Jump of a Function and the Bochner–Riesz Means of Conjugate Multiple Fourier Series and Fourier Integrals

B. I. Golubov

Moscow Institute of Physics and Technology
References:
Abstract: We introduce the notion of spherical jump of a function of several variables at a given point with respect to a homogeneous harmonic polynomial. Here, if the function is integrable over spheres of sufficiently small radius centered at the given point and is continuous at this point, then its spherical jump at this point with respect to any homogeneous harmonic polynomial, distinct from a constant, is zero. Under certain conditions on a function of n variables (n2) at a point where the spherical jump of this function with respect to a homogeneous harmonic polynomial P is distinct from zero, we calculate the first term of the asymptotics of the spherical Bochner–Riesz means of the critical order (n1)/2 of the series (integral) conjugate to the n-multiple Fourier series (integral) of this function with respect to the Riesz-type kernel generated by the polynomial P. This first term of the asymptotics contains the spherical jump of the function as a multiplicative constant.
Keywords: spherical jump of a function, harmonic polynomial, Bochner–Riesz mean, multiple Fourier series, Fourier integral, Riesz-type kernel.
Received: 18.02.2010
Revised: 01.01.2011
English version:
Mathematical Notes, 2012, Volume 91, Issue 4, Pages 479–486
DOI: https://doi.org/10.1134/S0001434612030212
Bibliographic databases:
Document Type: Article
UDC: 517.522.3
Language: Russian
Citation: B. I. Golubov, “Spherical Jump of a Function and the Bochner–Riesz Means of Conjugate Multiple Fourier Series and Fourier Integrals”, Mat. Zametki, 91:4 (2012), 506–514; Math. Notes, 91:4 (2012), 479–486
Citation in format AMSBIB
\Bibitem{Gol12}
\by B.~I.~Golubov
\paper Spherical Jump of a Function and the Bochner--Riesz Means of Conjugate Multiple Fourier Series and Fourier Integrals
\jour Mat. Zametki
\yr 2012
\vol 91
\issue 4
\pages 506--514
\mathnet{http://mi.mathnet.ru/mzm8739}
\crossref{https://doi.org/10.4213/mzm8739}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3201450}
\elib{https://elibrary.ru/item.asp?id=20731510}
\transl
\jour Math. Notes
\yr 2012
\vol 91
\issue 4
\pages 479--486
\crossref{https://doi.org/10.1134/S0001434612030212}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000303478900021}
\elib{https://elibrary.ru/item.asp?id=17983871}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84860358300}
Linking options:
  • https://www.mathnet.ru/eng/mzm8739
  • https://doi.org/10.4213/mzm8739
  • https://www.mathnet.ru/eng/mzm/v91/i4/p506
  • This publication is cited in the following 10 articles:
    1. A. Yu. Trynin, “O skhodimosti obobschenii sink-approksimatsii na klasse Privalova–Chanturiya”, Sib. zhurn. industr. matem., 24:3 (2021), 122–137  mathnet  crossref
    2. A. Yu. Trynin, “On the Convergence of Generalizations of the Sinc Approximations on the Privalov–Chanturia Class”, J. Appl. Ind. Math., 15:3 (2021), 531  crossref
    3. A. Yu. Trynin, E. D. Kireeva, “Printsip lokalizatsii na klasse funktsii, integriruemykh po Rimanu, dlya protsessov Lagranzha–Shturma–Liuvillya”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 20:1 (2020), 51–63  mathnet  crossref
    4. A. Yu. Trynin, “On the uniform approximation of functions of bounded variation by Lagrange interpolation polynomials with a matrix L(αn,βn)n of Jacobi nodes”, Izv. Math., 84:6 (2020), 1224–1249  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. A. Yu. Trynin, “Error Estimate for Uniform Approximation by Lagrange–Sturm–Liouville Processes”, J Math Sci, 247:6 (2020), 939  crossref
    6. A. Yu. Trynin, “Uniform convergence of Lagrange–Sturm–Liouville processes on one functional class”, Ufa Math. J., 10:2 (2018), 93–108  mathnet  crossref  isi
    7. A. Yu. Trynin, “Skhodimost protsessov Lagranzha–Shturma–Liuvillya dlya nepreryvnykh funktsii ogranichennoi variatsii”, Vladikavk. matem. zhurn., 20:4 (2018), 76–91  mathnet  crossref  elib
    8. A. Yu. Trynin, “Approximation of continuous on a segment functions with the help of linear combinations of sincs”, Russian Math. (Iz. VUZ), 60:3 (2016), 63–71  mathnet  crossref  isi
    9. A. Yu. Trynin, “On necessary and sufficient conditions for convergence of sinc-approximations”, St. Petersburg Math. J., 27:5 (2016), 825–840  mathnet  crossref  mathscinet  isi  elib
    10. A. Yu. Trynin, “On some properties of sinc approximations of continuous functions on the interval”, Ufa Math. J., 7:4 (2015), 111–126  mathnet  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математические заметки Mathematical Notes
    Statistics & downloads:
    Abstract page:607
    Full-text PDF :208
    References:88
    First page:32
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025