Abstract:
In this work the modulus of continuity of functions in the $L_p$ metric $(1\leqslant p<\nobreak\infty)$ is estimated through its best approximations in this metric by Haar and Walsh polynomials. Besides, estimates of best approximations of functions by Haar and Walsh polynomials in the $L_q$ metric are obtained by the same approximations in the $L_p$ metric $(1\leqslant p<q\leqslant\infty)$. In the last case, the results are analogous to those which were proved for approximations by trigonometric polynomials by P. L. Ul'yanov and also by S. B. Stechkin and A. A. Konyushkov.
Bibliography: 26 titles.
\Bibitem{Gol72}
\by B.~I.~Golubov
\paper Best approximations of functions in the $L_p$ metric by Haar and Walsh polynomials
\jour Math. USSR-Sb.
\yr 1972
\vol 16
\issue 2
\pages 265--285
\mathnet{http://mi.mathnet.ru/eng/sm3048}
\crossref{https://doi.org/10.1070/SM1972v016n02ABEH001425}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=293315}
\zmath{https://zbmath.org/?q=an:0235.42012|0249.42015}
Linking options:
https://www.mathnet.ru/eng/sm3048
https://doi.org/10.1070/SM1972v016n02ABEH001425
https://www.mathnet.ru/eng/sm/v129/i2/p254
This publication is cited in the following 17 articles:
N. T. Tleukhanova, L. O. Sarybekova, A. Orynbek, Trends in Mathematics, 5, Women in Analysis and PDE, 2024, 375
E. S. Smailov, “Some generalized Besov-type space $b_{p\theta}^{\varphi}([0,1];h)$ with the Haar basis”, Siberian Math. J., 63:6 (2022), 1140–1152
S. S. Volosivets, “Ulyanov-type embedding theorems for functions on zero-dimensional locally compact groups”, Siberian Math. J., 62:1 (2021), 32–43
N. T. Tleukhanova, A. N. Bashirova, “On Multipliers of Fourier Series in the Haar System”, Math. Notes, 109:6 (2021), 940–947
P. Oswald, “Multivariate Haar systems in Besov function spaces”, Sb. Math., 212:6 (2021), 810–842
Martin Schäfer, Tino Ullrich, Béatrice Vedel, “Hyperbolic Wavelet Analysis of Classical Isotropic and Anisotropic Besov–Sobolev Spaces”, J Fourier Anal Appl, 27:3 (2021)
S. S. Volosivets, B. I. Golubov, “Generalized absolute convergence of series from Fourier coeficients by systems of Haar type”, Russian Math. (Iz. VUZ), 62:1 (2018), 7–16
S. B. Vakarchuk, A. N. Shchitov, “Estimates for the error of approximation of functions in $L_p^1$ by polynomials
and partial sums of series in the Haar and Faber–Schauder systems”, Izv. Math., 79:2 (2015), 257–287
S. A. Stasyuk, “Priblizhenie nekotorykh gladkostnykh klassov periodicheskikh funktsii mnogikh peremennykh polinomami po tenzornoi sisteme Khaara”, Tr. IMM UrO RAN, 21, no. 4, 2015, 251–260
Stasyuk S.A., “Approximation of Certain Smoothness Classes of Periodic Functions of Several Variables By Polynomials With Regard to the Tensor Haar System”, Tr. Inst. Mat. Mekhaniki URO RAN, 21:4 (2015), 251–260
Boris I. Golubov, Atlantis Studies in Mathematics for Engineering and Science, 12, Dyadic Walsh Analysis from 1924 Onwards Walsh-Gibbs-Butzer Dyadic Differentiation in Science Volume 1 Foundations, 2015, 449
S. S. Volosivets, “Teoremy vlozheniya dlya $\mathbf{P}$-ichnykh prostranstv Khardi i $VMO$”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 14:4(2) (2014), 518–525
P. A. Terekhin, “Best approximation of functions in $L_p$ by polynomials on affine system”, Sb. Math., 202:2 (2011), 279–306
G. A. Akishev, “Obobschennaya sistema Khaara i teoremy vlozheniya v simmetrichnye prostranstva”, Fundament. i prikl. matem., 8:2 (2002), 319–334
V. I. Ivanov, “Approximation in $L_p$ by polynomials in the Walsh system”, Math. USSR-Sb., 62:2 (1989), 385–402
Oswald P., “Spline Approximation in the Lp-Metric, 0 Less-Than-Or-Equal-to P Less-Than-Or-Equal-to 1”, Math. Nachr., 94 (1980), 69–96
È. A. Storozhenko, V. G. Krotov, P. Oswald, “Direct and converse theorems of Jackson type in $L^p$ spaces, $0<p<1$”, Math. USSR-Sb., 27:3 (1975), 355–374