Funktsional'nyi Analiz i ego Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Funktsional. Anal. i Prilozhen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Funktsional'nyi Analiz i ego Prilozheniya, 2005, Volume 39, Issue 2, Pages 64–70
DOI: https://doi.org/10.4213/faa41
(Mi faa41)
 

This article is cited in 6 scientific papers (total in 6 papers)

Brief communications

Fractional Modified Dyadic Integral and Derivative on $\mathbb{R}_+$

B. I. Golubov

Moscow Engineering Physics Institute (State University)
Full-text PDF (218 kB) Citations (6)
References:
Abstract: For functions in the Lebesgue space $L(\mathbb{R}_+)$, a modified strong dyadic integral $J_\alpha$ and a modified strong dyadic derivative $D^{(\alpha)}$ of fractional order $\alpha>0$ are introduced. For a given function $f\in L(\mathbb{R}_+)$, criteria for the existence of these integrals and derivatives are obtained. A countable set of eigenfunctions for the operators $J_\alpha$ and $D^{(\alpha)}$ is indicated. The formulas $D^{(\alpha)}(J_\alpha(f))=f$ and $J_\alpha(D^{(\alpha)}(f))=f$ are proved for each $\alpha>0$ under the condition that $\int_{\mathbb{R}_+} f(x)\,dx=0$. We prove that the linear operator $J_\alpha\colon L_{J_\alpha}\to L(\mathbb{R}_+)$ is unbounded, where $L_{J_\alpha}$ is the natural domain of $J_\alpha$. A similar statement for the operator $D^{(\alpha)}\colon L_{D^{(\alpha)}}\to L(\mathbb{R}_+)$ is proved. A modified dyadic derivative $d^{(\alpha)}(f)(x)$ and a modified dyadic integral $j_\alpha(f)(x)$ are also defined for a function $f\in L(\mathbb{R}_+)$ and a given point $x\in\mathbb{R}_+$. The formulas $d^{(\alpha)}(J_\alpha(f))(x)=f(x)$ and $j_\alpha(D^{(\alpha)}(f))=f(x)$ are shown to be valid at each dyadic Lebesgue point $x\in\mathbb{R}_+$ of $f$.
Keywords: fractional strong dyadic derivative, fractional pointwise dyadic derivative, fractional strong dyadic integral, fractional pointwise dyadic integral, Walsh–Fourier transform, dyadic convolution.
Received: 28.08.2003
English version:
Functional Analysis and Its Applications, 2005, Volume 39, Issue 2, Pages 64–70
DOI: https://doi.org/10.1007/s10688-005-0026-4
Bibliographic databases:
Document Type: Article
UDC: 517.44
Language: Russian
Citation: B. I. Golubov, “Fractional Modified Dyadic Integral and Derivative on $\mathbb{R}_+$”, Funktsional. Anal. i Prilozhen., 39:2 (2005), 64–70; Funct. Anal. Appl., 39:2 (2005), 64–70
Citation in format AMSBIB
\Bibitem{Gol05}
\by B.~I.~Golubov
\paper Fractional Modified Dyadic Integral and Derivative on $\mathbb{R}_+$
\jour Funktsional. Anal. i Prilozhen.
\yr 2005
\vol 39
\issue 2
\pages 64--70
\mathnet{http://mi.mathnet.ru/faa41}
\crossref{https://doi.org/10.4213/faa41}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2161517}
\zmath{https://zbmath.org/?q=an:1144.42302}
\transl
\jour Funct. Anal. Appl.
\yr 2005
\vol 39
\issue 2
\pages 64--70
\crossref{https://doi.org/10.1007/s10688-005-0026-4}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-23744440724}
Linking options:
  • https://www.mathnet.ru/eng/faa41
  • https://doi.org/10.4213/faa41
  • https://www.mathnet.ru/eng/faa/v39/i2/p64
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Функциональный анализ и его приложения Functional Analysis and Its Applications
    Statistics & downloads:
    Abstract page:790
    Full-text PDF :284
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024