Persons
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
 
Seregin, Grigorii Aleksandrovich

Professor
Doctor of physico-mathematical sciences
E-mail: ,

https://www.mathnet.ru/eng/person8812
List of publications on Google Scholar
https://mathscinet.ams.org/mathscinet/MRAuthorID/293381
https://elibrary.ru/author_items.asp?authorid=3651

Publications in Math-Net.Ru Citations
2020
1. G. Seregin, “A note on weak solutions to the Navier–Stokes equations that are locally in $L_\infty(L^{3,\infty})$”, Algebra i Analiz, 32:3 (2020),  238–253  mathnet; St. Petersburg Math. J., 32:3 (2021), 565–576 2
2. G. Seregin, “On Type I blowups of suitable weak solutions to Navier–Stokes equations near boundary”, Zap. Nauchn. Sem. POMI, 489 (2020),  81–95  mathnet 1
2019
3. G. Seregin, W. Wang, “Sufficient conditions on Liouville type theorems for the 3D steady Navier–Stokes equations”, Algebra i Analiz, 31:2 (2019),  269–278  mathnet  elib; St. Petersburg Math. J., 31:2 (2019), 387–393  isi  scopus 25
2018
4. G. Seregin, “Remarks on Liouville type theorems for steady-state Navier–Stokes equations”, Algebra i Analiz, 30:2 (2018),  238–248  mathnet  mathscinet  elib; St. Petersburg Math. J., 30:2 (2019), 321–328  isi  scopus 25
5. G. A. Seregin, T. N. Shilkin, “Liouville-type theorems for the Navier–Stokes equations”, Uspekhi Mat. Nauk, 73:4(442) (2018),  103–170  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 73:4 (2018), 661–724  isi  scopus 16
6. G. Seregin, D. Zhou, “Regularity of solutions to the Navier–Stokes equations in $\dot{B}_{\infty,\infty}^{-1}$”, Zap. Nauchn. Sem. POMI, 477 (2018),  119–128  mathnet 4
2017
7. J. Burczak, G. Seregin, “$LlogL$-integrability of the velocity gradient for Stokes system with drifts in $L_\infty (BMO^{-1})$”, Zap. Nauchn. Sem. POMI, 459 (2017),  37–57  mathnet; J. Math. Sci. (N. Y.), 236:4 (2019), 399–412
2016
8. G. Seregin, “Remark on Wolf's condition for boundary regularity of Navier–Stokes equations”, Zap. Nauchn. Sem. POMI, 444 (2016),  124–132  mathnet  mathscinet; J. Math. Sci. (N. Y.), 224:3 (2017), 468–474  scopus 5
2014
9. G. Seregin, “Liouville theorem for 2D Navier–Stokes equations in half space”, Zap. Nauchn. Sem. POMI, 425 (2014),  137–148  mathnet; J. Math. Sci. (N. Y.), 210:6 (2015), 849–856  scopus 11
2013
10. G. Seregin, V. Šverák, “Rescalings at possible singularities of Navier–Stokes equations in half-space”, Algebra i Analiz, 25:5 (2013),  146–172  mathnet  mathscinet  zmath  elib; St. Petersburg Math. J., 25:5 (2014), 815–833  isi  scopus 11
11. H. Jia, G. Seregin, V. Sverak, “A Liouville theorem for the Stokes system in half-space”, Zap. Nauchn. Sem. POMI, 410 (2013),  25–35  mathnet  mathscinet; J. Math. Sci. (N. Y.), 195:1 (2013), 13–19  scopus 5
2011
12. G. Seregin, “Note on bounded scale-invariant quantities for the Navier–Stokes equations”, Zap. Nauchn. Sem. POMI, 397 (2011),  150–156  mathnet  mathscinet; J. Math. Sci. (N. Y.), 185:5 (2012), 742–745  scopus 5
2010
13. G. Seregin, V. Sverak, “On a bounded shear flow in half-space”, Zap. Nauchn. Sem. POMI, 385 (2010),  200–205  mathnet; J. Math. Sci. (N. Y.), 178:3 (2011), 353–356  scopus 15
14. G. A. Seregin, “Necessary conditions of potential blow up for Navier–Stokes equations”, Zap. Nauchn. Sem. POMI, 385 (2010),  187–199  mathnet; J. Math. Sci. (N. Y.), 178:3 (2011), 345–352  scopus 14
2009
15. G. A. Seregin, “A note on local boundary regularity for the Stokes system”, Zap. Nauchn. Sem. POMI, 370 (2009),  151–159  mathnet; J. Math. Sci. (N. Y.), 166:1 (2010), 86–90  scopus 23
2008
16. G. A. Seregin, “On a reverse Hölder inequality for a class of suitable weak solutions to the Navier–Stokes equations”, Zap. Nauchn. Sem. POMI, 362 (2008),  325–336  mathnet  zmath; J. Math. Sci. (N. Y.), 159:4 (2009), 573–579  scopus 4
2007
17. G. A. Seregin, “Local regularity for suitable weak solutions of the Navier–Stokes equations”, Uspekhi Mat. Nauk, 62:3(375) (2007),  149–168  mathnet  mathscinet  zmath  elib; Russian Math. Surveys, 62:3 (2007), 595–614  isi  elib  scopus 29
18. M. Fuchs, G. A. Seregin, “Existence of global solutions for a parabolic system related to the nonlinear Stokes problem”, Zap. Nauchn. Sem. POMI, 348 (2007),  254–271  mathnet; J. Math. Sci. (N. Y.), 152:5 (2008), 769–779  scopus 1
2006
19. G. A. Seregin, “New version of the Ladyzhenskaya–Prodi–Serrin condition”, Algebra i Analiz, 18:1 (2006),  124–143  mathnet  mathscinet  zmath  elib; St. Petersburg Math. J., 18:1 (2007), 89–103 10
20. G. A. Seregin, “Estimates of suitable weak solutions to the Navier–Stokes equations in critical Morrey spaces”, Zap. Nauchn. Sem. POMI, 336 (2006),  199–210  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 143:2 (2007), 2961–2968  scopus 27
21. W. Zajączkowski, G. A. Seregin, “A sufficient condition of local regularity for the Navier–Stokes equations”, Zap. Nauchn. Sem. POMI, 336 (2006),  46–54  mathnet  mathscinet  zmath  elib; J. Math. Sci. (N. Y.), 143:2 (2007), 2869–2874  scopus 12
2004
22. G. A. Seregin, T. N. Shilkin, V. A. Solonnikov, “Boundary partial regularity for the Navier–Stokes equations”, Zap. Nauchn. Sem. POMI, 310 (2004),  158–190  mathnet  mathscinet  zmath  elib; J. Math. Sci. (N. Y.), 132:3 (2006), 339–358 26
2003
23. L. Escauriaza, G. Seregin, V. Šverak, “Backward uniqueness for the heat operator in half-space”, Algebra i Analiz, 15:1 (2003),  201–214  mathnet  mathscinet  zmath 30
24. L. Escauriaza, G. A. Seregin, V. Šverak, “$L_{3,\infty}$-solutions of the Navier–Stokes equations and backward uniqueness”, Uspekhi Mat. Nauk, 58:2(350) (2003),  3–44  mathnet  mathscinet  zmath; Russian Math. Surveys, 58:2 (2003), 211–250  isi  scopus 514
25. G. A. Seregin, V. Šverak, “On smoothness of suitable weak solutions to the Navier–Stokes equations”, Zap. Nauchn. Sem. POMI, 306 (2003),  186–198  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 130:4 (2005), 4884–4892 7
26. G. A. Seregin, “Remarks on regularity of weak solutions to the Navier–Stokes equations near the boundary”, Zap. Nauchn. Sem. POMI, 295 (2003),  168–179  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 127:2 (2005), 1915–1922 7
2002
27. G. A. Seregin, “Differentiability properties of weak solutions of the Navier–Stokes equations”, Algebra i Analiz, 14:1 (2002),  194–237  mathnet  mathscinet  zmath; St. Petersburg Math. J., 14:1 (2003), 147–178 13
28. L. Escauriaza, G. A. Seregin, V. Šverak, “On Backward uniqueness for parabolic equations”, Zap. Nauchn. Sem. POMI, 288 (2002),  100–103  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 123:6 (2004), 4577–4579 12
2000
29. G. A. Seregin, “Some estimates near the boundary for solutions to the non-stationary linearized Navier–Stokes equations”, Zap. Nauchn. Sem. POMI, 271 (2000),  204–223  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 115:6 (2003), 2820–2831 31
1999
30. G. A. Seregin, “$J_p^1$-quasiconvexity and variational problems on sets of solenoidal vector fields”, Algebra i Analiz, 11:2 (1999),  170–217  mathnet  mathscinet  zmath; St. Petersburg Math. J., 11:2 (2000), 337–373 6
31. G. A. Seregin, “Partial regularity for solutions to the modified Navier–Stokes equations”, Zap. Nauchn. Sem. POMI, 259 (1999),  238–253  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 109:5 (2002), 1984–1996
32. O. A. Ladyzhenskaya, G. A. Seregin, “On reqularity of solutions to two-dimensional equations of the dynamics of fluids with nonlinear viscosity”, Zap. Nauchn. Sem. POMI, 259 (1999),  145–166  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 109:5 (2002), 1911–1928 17
1998
33. G. A. Seregin, “A variational problem on the phase equilibrium of an elastic body”, Algebra i Analiz, 10:3 (1998),  92–132  mathnet  mathscinet  zmath; St. Petersburg Math. J., 10:3 (1999), 477–506 5
34. O. A. Ladyzhenskaya, G. A. Seregin, “Smoothness of solutions of equations describing generalized Newtonian flows and estimates for the dimensions of their attractors”, Izv. RAN. Ser. Mat., 62:1 (1998),  59–122  mathnet  mathscinet  zmath  elib; Izv. Math., 62:1 (1998), 55–113  isi  scopus 8
1997
35. G. A. Seregin, “Flow of two-dimensional generalized Newtonian fluid”, Algebra i Analiz, 9:1 (1997),  167–200  mathnet  mathscinet  zmath; St. Petersburg Math. J., 9:1 (1998), 121–146 8
36. O. A. Ladyzhenskaya, G. A. Seregin, “On the smoothness of solutions of systems describing the flow of generalized Newtonian fluids and the estimation of the dimensions of their attractors”, Dokl. Akad. Nauk, 354:5 (1997),  590–592  mathnet  mathscinet  zmath 1
37. G. A. Seregin, “On attractors for equations describing the flow of generalized Newtonian fluids”, Zap. Nauchn. Sem. POMI, 249 (1997),  256–293  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 101:5 (2000), 3539–3562 2
38. G. A. Seregin, T. N. Shilkin, “Regularity for minimaizers of some variational problems in plasticity theory”, Zap. Nauchn. Sem. POMI, 243 (1997),  270–298  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 99:1 (2000), 969–988 7
1996
39. G. A. Seregin, “Two-dimensional variational problems of the theory of plasticity”, Izv. RAN. Ser. Mat., 60:1 (1996),  175–210  mathnet  mathscinet  zmath; Izv. Math., 60:1 (1996), 179–216  isi  scopus 15
40. G. A. Seregin, “Remarks on regularity up to the boundary for solutions to variational problems in plasticity theory”, Zap. Nauchn. Sem. POMI, 233 (1996),  227–232  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 93:5 (1999), 779–783 11
1995
41. G. A. Seregin, “On the regularity of solutions of variational problems in the theory of phase transitions in an elastic body”, Algebra i Analiz, 7:6 (1995),  153–187  mathnet  mathscinet  zmath; St. Petersburg Math. J., 7:6 (1996), 979–1003 8
42. G. A. Seregin, T. N. Shilkin, “Some remarks on the mollification of piecewise-linear homeomorphisms”, Zap. Nauchn. Sem. POMI, 221 (1995),  235–242  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 87:2 (1997), 3428–3433 4
1994
43. M. Fuchs, G. A. Seregin, “Partial regularity of the deformation gradient for some model problems in nonlinear twodimensional elasticity”, Algebra i Analiz, 6:6 (1994),  128–153  mathnet  mathscinet  zmath; St. Petersburg Math. J., 6:6 (1995), 1229–1248
44. G. A. Seregin, “Some remarks on variational problems for functionals with $L\ln L$ growth”, Zap. Nauchn. Sem. POMI, 213 (1994),  164–178  mathnet  mathscinet  zmath; J. Math. Sci. (New York), 84:1 (1997), 919–929 2
1992
45. G. A. Seregin, “Differential properties of the stress tensor in the Coulomb-Mohr theory of plasticity”, Algebra i Analiz, 4:6 (1992),  234–252  mathnet  mathscinet  zmath; St. Petersburg Math. J., 4:6 (1993), 1257–1272 5
46. G. A. Seregin, “On the regularity of minimizers of some variational problems in the theory of plasticity”, Algebra i Analiz, 4:5 (1992),  181–218  mathnet  mathscinet  zmath; St. Petersburg Math. J., 4:5 (1993), 989–1020 14
47. G. A. Seregin, “A local estimate of maximum of the module of the deviator of strain tensor in elastic-plastic body with linear hardening”, Zap. Nauchn. Sem. POMI, 200 (1992),  167–176  mathnet  mathscinet  zmath; J. Math. Sci., 77:3 (1995), 3243–3249 1
48. O. A. Ladyzhenskaya, G. A. Seregin, “On some way of the approximation of solutions of initial boundary value problems for Navier–Stokes equations”, Zap. Nauchn. Sem. LOMI, 197 (1992),  87–119  mathnet  mathscinet  zmath; J. Math. Sci., 75:6 (1995), 2038–2057 6
1991
49. G. A. Seregin, “On the dynamical system associated with two dimensional equations of the motion of Bingham fluid”, Zap. Nauchn. Sem. LOMI, 188 (1991),  128–142  mathnet  mathscinet  zmath; J. Math. Sci., 70:3 (1994), 1806–1816 18
1990
50. G. A. Seregin, “On the regularity of weak solutions of variational problems of plasticity theory”, Algebra i Analiz, 2:2 (1990),  121–140  mathnet  mathscinet  zmath; Leningrad Math. J., 2:2 (1991), 321–338 4
51. G. A. Seregin, “Regularity of weak solutions of variational problems in plasticity theory”, Dokl. Akad. Nauk SSSR, 314:6 (1990),  1344–1349  mathnet  mathscinet  zmath; Dokl. Math., 42:2 (1991), 683–688 1
52. G. A. Seregin, “Differential properties of extremals of variational problems that arise in the theory of plasticity”, Differ. Uravn., 26:6 (1990),  1033–1044  mathnet  mathscinet; Differ. Equ., 26:6 (1990), 756–766 2
53. G. A. Seregin, “Differential properties of extremals of variational problems in the mechanics of viscoplastic media”, Trudy Mat. Inst. Steklov., 188 (1990),  117–124  mathnet  mathscinet  zmath; Proc. Steklov Inst. Math., 188 (1991), 147–157 1
1987
54. G. A. Seregin, “On the differentiability of extremals of variational problems of the mechanics of ideally elastoplastic media”, Differ. Uravn., 23:11 (1987),  1981–1991  mathnet  mathscinet 2
55. G. A. Serëgin, “On the differentiability of local extremals of variational problems of the mechanics of rigidly viscoplastic media”, Izv. Vyssh. Uchebn. Zaved. Mat., 1987, no. 10,  23–30  mathnet  mathscinet  zmath; Soviet Math. (Iz. VUZ), 31:10 (1987), 29–38 2
56. G. A. Seregin, “A variational-difference scheme for problems of limit equilibrium”, Zh. Vychisl. Mat. Mat. Fiz., 27:1 (1987),  83–92  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 27:1 (1987), 53–59 1
1986
57. G. A. Seregin, “On differential properties of weak solutions of nonlinear elliptic systems arising in plasticity theory”, Mat. Sb. (N.S.), 130(172):3(7) (1986),  291–309  mathnet  mathscinet  zmath; Math. USSR-Sb., 58:2 (1987), 289–309 4
1985
58. G. A. Seregin, “Variational-difference schemes for problems of the mechanics of ideally elastoplastic media”, Zh. Vychisl. Mat. Mat. Fiz., 25:2 (1985),  237–253  mathnet  mathscinet  zmath; U.S.S.R. Comput. Math. Math. Phys., 25:1 (1985), 153–165 10
1984
59. G. A. Seregin, “Well-posedness of variational problems of the mechanics of ideally elastoplastic media”, Dokl. Akad. Nauk SSSR, 276:1 (1984),  71–75  mathnet  mathscinet  zmath 3
60. G. A. Seregin, “Variational problems and evolution variational inequalities in nonreflexive spaces with applications to problems of geometry and plasticity”, Izv. Akad. Nauk SSSR Ser. Mat., 48:2 (1984),  420–445  mathnet  mathscinet  zmath; Math. USSR-Izv., 24:2 (1985), 391–414 1
1983
61. G. A. Seregin, “Well-posedness of initial-boundary value problems in the mechanics of ideally elastoplastic media”, Dokl. Akad. Nauk SSSR, 270:4 (1983),  810–813  mathnet  mathscinet  zmath

2024
62. D. E. Apushkinskaya, A. A. Arkhipova, V. M. Babich, G. S. Weiss, I. A. Ibragimov, S. V. Kislyakov, N. V. Krylov, A. Laptev, A. I. Nazarov, G. A. Seregin, T. A. Suslina, H. Shahgholian, “On the 90th birthday of Nina Nikolaevna Ural'tseva”, Uspekhi Mat. Nauk, 79:6(480) (2024),  179–192  mathnet
2023
63. G. I. Bizhanova, I. V. Denisova, A. I. Nazarov, K. I. Pileckas, V. V. Pukhnachev, S. I. Repin, J.-F. Rodrigues, G. A. Seregin, N. N. Uraltseva, E. V. Frolova, “On the 90th birthday of Vsevolod Alekseevich Solonnikov”, Uspekhi Mat. Nauk, 78:5(473) (2023),  187–198  mathnet  mathscinet; Russian Math. Surveys, 78:5 (2023), 971–981  isi
2008
64. I. V. Denisova, K. I. Pileckas, S. I. Repin, G. A. Seregin, N. N. Ural'tseva, E. V. Frolova, “To Solonnikov's jubilee”, Zap. Nauchn. Sem. POMI, 362 (2008),  5–14  mathnet  zmath; J. Math. Sci. (N. Y.), 159:4 (2009), 385–390  scopus 1
2004
65. V. I. Arnol'd, M. Sh. Birman, A. M. Vershik, M. I. Vishik, I. M. Gel'fand, I. A. Ibragimov, V. P. Maslov, S. P. Novikov, G. A. Seregin, Ya. G. Sinai, M. Z. Solomyak, V. A. Solonnikov, N. N. Ural'tseva, L. D. Faddeev, “Olga Aleksandrovna Ladyzhenskaya (obituary)”, Uspekhi Mat. Nauk, 59:3(357) (2004),  151–152  mathnet  mathscinet  zmath; Russian Math. Surveys, 59:3 (2004), 553–555  isi 2
66. A. A. Arkhipova, G. A. Seregin, “To the 70th anniversary of Nina Nikolaevna Ural'tseva”, Zap. Nauchn. Sem. POMI, 310 (2004),  7–18  mathnet  mathscinet  zmath  elib; J. Math. Sci. (N. Y.), 132:3 (2006), 249–254  elib
2003
67. G. A. Seregin, N. N. Ural'tseva, “Ol'ga Aleksandrovna Ladyzhenskaya (on her 80th birthday)”, Uspekhi Mat. Nauk, 58:2(350) (2003),  181–206  mathnet  mathscinet  zmath; Russian Math. Surveys, 58:2 (2003), 395–425  isi 1
68. I. V. Denisova, O. A. Ladyzhenskaya, G. A. Seregin, N. N. Ural'tseva, E. V. Frolova, “To Vsevolod Alekseevich Solonnikov on the occasion of his jubilee”, Zap. Nauchn. Sem. POMI, 306 (2003),  7–15  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 130:4 (2005), 4775–4779 2
2002
69. A. A. Arkhipova, M. S. Birman, V. S. Buslaev, V. G. Osmolovskii, S. I. Repin, G. A. Seregin, N. N. Ural'tseva, T. N. Shilkin, “To the jubillee of O. A. Ladyzhenskaya”, Zap. Nauchn. Sem. POMI, 288 (2002),  5–13  mathnet  mathscinet  zmath; J. Math. Sci. (N. Y.), 123:6 (2004), 4523–4526 2

Presentations in Math-Net.Ru
1. Remarks on potential singularities of solutions to certain elliptic systems of PDE's
G. A. Seregin
Friends in Partial Differential Equations
May 26, 2024 15:15   
2. On axisymmetric solutions of the Navier-Stokes equations
G. A. Seregin
V. I. Smirnov Seminar on Mathematical Physics
June 1, 2020 16:30   
3. О гладкости решений уравнений Навье-Стокса
G. A. Seregin
International conference "Contemporary Problems of Mathematics, Mechanics, and Mathematical Physics" dedicated to the 150th anniversary of V. A. Steklov
May 17, 2013 11:45   
4. Global wellposedness and local regularity for Navier–Stokes Equations
G. Seregin
Mathematics - XXI century. PDMI 70th anniversary
September 17, 2010 13:30   
5. Mathematical problems of dynamics of generalized Newtonial fluids
G. A. Seregin
General Mathematics Seminar of the St. Petersburg Division of Steklov Institute of Mathematics, Russian Academy of Sciences
April 21, 1997

Organisations
 
  Contact us:
 Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025