Processing math: 100%
Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1996, Volume 233, Pages 227–232 (Mi znsl3670)  

This article is cited in 11 scientific papers (total in 11 papers)

Remarks on regularity up to the boundary for solutions to variational problems in plasticity theory

G. A. Seregin

С.-Петербургское отделение Математического института им. В. А. Стеклова РАН
Abstract: We discuss the problem of global W12-regularity for the strew tensor of a perfect elastic-plastic body being in equilibrium. In particular, we construct an example, showing that the method proposed by the author to establish local W12-regularity, in general does not work in investigations of regularity up to the boundary if the given body is non-convex. Bibl. 3 titles.
Received: 07.10.1995
English version:
Journal of Mathematical Sciences (New York), 1999, Volume 93, Issue 5, Pages 779–783
DOI: https://doi.org/10.1007/BF02366854
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Citation: G. A. Seregin, “Remarks on regularity up to the boundary for solutions to variational problems in plasticity theory”, Boundary-value problems of mathematical physics and related problems of function theory. Part 27, Zap. Nauchn. Sem. POMI, 233, POMI, St. Petersburg, 1996, 227–232; J. Math. Sci. (New York), 93:5 (1999), 779–783
Citation in format AMSBIB
\Bibitem{Ser96}
\by G.~A.~Seregin
\paper Remarks on regularity up to the boundary for solutions to variational problems in plasticity theory
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~27
\serial Zap. Nauchn. Sem. POMI
\yr 1996
\vol 233
\pages 227--232
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl3670}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1699125}
\zmath{https://zbmath.org/?q=an:0954.74508}
\transl
\jour J. Math. Sci. (New York)
\yr 1999
\vol 93
\issue 5
\pages 779--783
\crossref{https://doi.org/10.1007/BF02366854}
Linking options:
  • https://www.mathnet.ru/eng/znsl3670
  • https://www.mathnet.ru/eng/znsl/v233/p227
  • This publication is cited in the following 11 articles:
    1. Arrigo Cellina, “On the regularity of solutions to the plastoelasticity problem”, Advances in Calculus of Variations, 13:1 (2020), 1  crossref
    2. Bulicek M., Frehse J., “A Revision of Results For Standard Models in Elasto-Perfect-Plasticity Theory”, Calc. Var. Partial Differ. Equ., 57:2 (2018), 50  crossref  mathscinet  zmath  isi  scopus  scopus
    3. Knees D., “On Global Spatial Regularity and Convergence Rates for Time-Dependent Elasto-Plasticity”, Mathematical Models & Methods in Applied Sciences, 20:10 (2010), 1823–1858  crossref  mathscinet  zmath  isi  scopus  scopus
    4. P. Gruber, D. Knees, S. Nesenenko, M. Thomas, “Analytical and numerical aspects of time‐dependent models with internal variables”, Z Angew Math Mech, 90:10-11 (2010), 861  crossref
    5. Demyanov A., “Quasistatic evolution in the theory of perfect elasto-plastic plates. Part II: Regularity of bending moments”, Ann Inst H Poincaré Anal Non Linéaire, 26:6 (2009), 2137–2163  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    6. Alber H.-D., Nesenenko S., “Local H-1-regularity and H1/3-delta-regularity up to the boundary in time dependent viscoplasticity”, Asymptot Anal, 63:3 (2009), 151–187  mathscinet  zmath  isi  elib
    7. Demyanov A., “Regularity of stresses in Prandtl-Reuss perfect plasticity”, Calc Var Partial Differential Equations, 34:1 (2009), 23–72  crossref  mathscinet  zmath  isi  scopus  scopus
    8. Alber H.-D., Nesenenko S., “Local and Global Regularity in Time Dependent Viscoplasticity”, Iutam Symposium on Theoretical, Computational and Modelling Aspects of Inelastic Media, Iutam Bookseries, 11, 2008, 363–372  crossref  zmath  isi
    9. Knees D., “Global stress regularity of convex and some nonconvex variational problems”, Ann Mat Pura Appl, 187:1 (2008), 157–184  crossref  mathscinet  zmath  isi  scopus  scopus
    10. Knees D., “Global regularity of the elastic fields of a power-law model on Lipschitz domains”, Math Methods Appl Sci, 29:12 (2006), 1363–1391  crossref  mathscinet  zmath  isi  scopus  scopus
    11. Frehse J., Malek J., “Boundary Regularity Results for Models of Elasto-Perfect Plasticity”, Math. Models Meth. Appl. Sci., 9:9 (1999), 1307–1321  crossref  mathscinet  zmath  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:213
    Full-text PDF :65
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025