Izvestiya: Mathematics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Forthcoming papers
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. RAN. Ser. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya: Mathematics, 1996, Volume 60, Issue 1, Pages 179–216
DOI: https://doi.org/10.1070/IM1996v060n01ABEH000067
(Mi im67)
 

This article is cited in 15 scientific papers (total in 15 papers)

Two-dimensional variational problems of the theory of plasticity

G. A. Seregin

Leningrad Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
References:
Abstract: The present work gives explicit criteria for the local continuity of the stress tensor, which is a minimizer of a two-dimensional variational problem (the Haar–Karman principle). The local continuity of the deformation tensor is derived from the dual relations that reflect the fact that the displacement vector and the stress tensor are the saddle point of a particular Lagrangian.
Received: 19.07.1994
Bibliographic databases:
MSC: 73E05
Language: English
Original paper language: Russian
Citation: G. A. Seregin, “Two-dimensional variational problems of the theory of plasticity”, Izv. Math., 60:1 (1996), 179–216
Citation in format AMSBIB
\Bibitem{Ser96}
\by G.~A.~Seregin
\paper Two-dimensional variational problems of the theory of plasticity
\jour Izv. Math.
\yr 1996
\vol 60
\issue 1
\pages 179--216
\mathnet{http://mi.mathnet.ru/eng/im67}
\crossref{https://doi.org/10.1070/IM1996v060n01ABEH000067}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1391123}
\zmath{https://zbmath.org/?q=an:0881.73039}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1996VE15400008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-26444604522}
Linking options:
  • https://www.mathnet.ru/eng/im67
  • https://doi.org/10.1070/IM1996v060n01ABEH000067
  • https://www.mathnet.ru/eng/im/v60/i1/p175
  • This publication is cited in the following 15 articles:
    1. Muneo HORI, Hiroki MOTOYAMA, “APPLICATION OF ALTERNATIVE FORMULATION OF ELASTOPLASTICITY TO 1D PROBLEMS”, Journal of JSCE, 12:1 (2024), n/a  crossref
    2. Gmeineder F., “The Regularity of Minima For the Dirichlet Problem on Bd”, Arch. Ration. Mech. Anal., 237:3 (2020), 1099–1171  crossref  isi
    3. M. Bildhauer, M. Fuchs, “Splitting Type Variational Problems with Linear Growth Conditions”, J Math Sci, 250:2 (2020), 232  crossref
    4. Gmeineder F., Kristensen J., “Sobolev Regularity For Convex Functionals on Bd”, Calc. Var. Partial Differ. Equ., 58:2 (2019), 56  crossref  mathscinet  zmath  isi  scopus
    5. Miroslav Bulíček, Jens Frehse, “A revision of results for standard models in elasto-perfect-plasticity theory”, Calc. Var., 57:2 (2018)  crossref
    6. Lisa Beck, Thomas Schmidt, “Convex duality and uniqueness for BV-minimizers”, Journal of Functional Analysis, 268:10 (2015), 3061  crossref  mathscinet  zmath  scopus
    7. J. Math. Sci. (N. Y.), 178:3 (2011), 367–372  mathnet  crossref
    8. A. Demyanov, “Regularity of stresses in Prandtl-Reuss perfect plasticity”, Calc Var, 34:1 (2009), 23  crossref  mathscinet  zmath  isi  scopus  scopus
    9. Demyanov, A, “Quasistatic evolution in the theory of perfect elasto-plastic plates. Part II: Regularity of bending moments”, Annales de l Institut Henri Poincare-Analyse Non Lineaire, 26:6 (2009), 2137  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    10. M. Bulíček, J. Frehse, J. Málek, “On boundary regularity for the stress in problems of linearized elasto-plasticity”, Int J Adv Eng Sci Appl Math, 1:4 (2009), 141  crossref
    11. Bildhauer M., Fuchs M., “Regularization of convex variational problems with applications to generalized Newtonian fluids”, Archiv der Mathematik, 84:2 (2005), 155–170  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    12. Bildhauer M., “Convex variational problems - Linear, nearly linear and anisotropic growth conditions”, Convex Variational Problems: Linear, Nearly Linear and Anisotropic Growth Conditions, Lecture Notes in Mathematics, 1818, 2003, 1–+  crossref  mathscinet  isi
    13. Bildhauer M., “A note on degenerate variational problems with linear growth”, Zeitschrift fur Analysis und Ihre Anwendungen, 20:3 (2001), 589–598  crossref  mathscinet  zmath  isi
    14. Fuchs M., Seregin G., “Variational methods for problems from plasticity theory and for generalized Newtonian fluids”, Variational Methods for Problems From Plasticity Theory and for Generalized Newtonian Fluids, Lecture Notes in Mathematics, 1749, 2000, 1–267  crossref  mathscinet  isi
    15. M. K. Renesse, “A counterexample to Hencky plasticity in the case of a thin plate under vertical load”, J Math Sci, 97:4 (1999), 4306  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Российской академии наук. Серия математическая Izvestiya: Mathematics
    Statistics & downloads:
    Abstract page:649
    Russian version PDF:327
    English version PDF:36
    References:97
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025