|
This article is cited in 511 scientific papers (total in 511 papers)
$L_{3,\infty}$-solutions of the Navier–Stokes equations and backward uniqueness
L. Escauriazaa, G. A. Sereginb, V. Šverakc a Universidad del Pais Vasco-Euskal Herriko Unibertsitatea, Dipartimento di Matematicas
b St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
c University of Minnesota, School of Mathematics
Abstract:
It is shown that the $L_{3,\infty}$-solutions of the Cauchy problem for the three-dimensional Navier–Stokes equations are smooth.
Received: 15.02.2003
Citation:
L. Escauriaza, G. A. Seregin, V. Šverak, “$L_{3,\infty}$-solutions of the Navier–Stokes equations and backward uniqueness”, Uspekhi Mat. Nauk, 58:2(350) (2003), 3–44; Russian Math. Surveys, 58:2 (2003), 211–250
Linking options:
https://www.mathnet.ru/eng/rm609https://doi.org/10.1070/RM2003v058n02ABEH000609 https://www.mathnet.ru/eng/rm/v58/i2/p3
|
Statistics & downloads: |
Abstract page: | 1780 | Russian version PDF: | 510 | English version PDF: | 73 | References: | 181 | First page: | 5 |
|