Zapiski Nauchnykh Seminarov POMI
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Zap. Nauchn. Sem. POMI:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Zapiski Nauchnykh Seminarov POMI, 1997, Volume 243, Pages 270–298 (Mi znsl505)  

This article is cited in 7 scientific papers (total in 7 papers)

Regularity for minimaizers of some variational problems in plasticity theory

G. A. Seregin, T. N. Shilkin

St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
Full-text PDF (269 kB) Citations (7)
Abstract: A variational problem for functionals depending on the symmetric part of the gradient of unknown vector-valued function is considered. We suppose that the integrand of the problem has the power growth with the exponent less then two. We prove summability of the second derivatives of minimizers near the boundary. In two-dimentional case Hölder continuity up to the boundary of the strain and stress tensors is established.
Received: 31.03.1996
English version:
Journal of Mathematical Sciences (New York), 2000, Volume 99, Issue 1, Pages 969–988
DOI: https://doi.org/10.1007/BF02673602
Bibliographic databases:
UDC: 517.948.34
Language: Russian
Citation: G. A. Seregin, T. N. Shilkin, “Regularity for minimaizers of some variational problems in plasticity theory”, Boundary-value problems of mathematical physics and related problems of function theory. Part 28, Zap. Nauchn. Sem. POMI, 243, POMI, St. Petersburg, 1997, 270–298; J. Math. Sci. (New York), 99:1 (2000), 969–988
Citation in format AMSBIB
\Bibitem{SerShi97}
\by G.~A.~Seregin, T.~N.~Shilkin
\paper Regularity for minimaizers of some variational problems in plasticity theory
\inbook Boundary-value problems of mathematical physics and related problems of function theory. Part~28
\serial Zap. Nauchn. Sem. POMI
\yr 1997
\vol 243
\pages 270--298
\publ POMI
\publaddr St.~Petersburg
\mathnet{http://mi.mathnet.ru/znsl505}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1629749}
\zmath{https://zbmath.org/?q=an:0904.49025}
\transl
\jour J. Math. Sci. (New York)
\yr 2000
\vol 99
\issue 1
\pages 969--988
\crossref{https://doi.org/10.1007/BF02673602}
Linking options:
  • https://www.mathnet.ru/eng/znsl505
  • https://www.mathnet.ru/eng/znsl/v243/p270
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Записки научных семинаров ПОМИ
    Statistics & downloads:
    Abstract page:236
    Full-text PDF :64
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024